Total cohomology of solvable lie algebras and linear deformations
- Autores
- Cagliero, Leandro Roberto; Tirao, Paulo Andres
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
LIE ALGEBRA VANISHING COHOMOLOGY
LINEAR DEFORMATIONS
NILSHADOW
TOTAL COHOMOLOGY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58326
Ver los metadatos del registro completo
| id |
CONICETDig_0004f07df2cab5c38d2e292cd837258c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58326 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Total cohomology of solvable lie algebras and linear deformationsCagliero, Leandro RobertoTirao, Paulo AndresLIE ALGEBRA VANISHING COHOMOLOGYLINEAR DEFORMATIONSNILSHADOWTOTAL COHOMOLOGYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology.Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58326Cagliero, Leandro Roberto; Tirao, Paulo Andres; Total cohomology of solvable lie algebras and linear deformations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 5; 5-2016; 3341-33580002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6424info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2016-368-05/S0002-9947-2015-06424-1/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:05:09Zoai:ri.conicet.gov.ar:11336/58326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:05:10.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Total cohomology of solvable lie algebras and linear deformations |
| title |
Total cohomology of solvable lie algebras and linear deformations |
| spellingShingle |
Total cohomology of solvable lie algebras and linear deformations Cagliero, Leandro Roberto LIE ALGEBRA VANISHING COHOMOLOGY LINEAR DEFORMATIONS NILSHADOW TOTAL COHOMOLOGY |
| title_short |
Total cohomology of solvable lie algebras and linear deformations |
| title_full |
Total cohomology of solvable lie algebras and linear deformations |
| title_fullStr |
Total cohomology of solvable lie algebras and linear deformations |
| title_full_unstemmed |
Total cohomology of solvable lie algebras and linear deformations |
| title_sort |
Total cohomology of solvable lie algebras and linear deformations |
| dc.creator.none.fl_str_mv |
Cagliero, Leandro Roberto Tirao, Paulo Andres |
| author |
Cagliero, Leandro Roberto |
| author_facet |
Cagliero, Leandro Roberto Tirao, Paulo Andres |
| author_role |
author |
| author2 |
Tirao, Paulo Andres |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
LIE ALGEBRA VANISHING COHOMOLOGY LINEAR DEFORMATIONS NILSHADOW TOTAL COHOMOLOGY |
| topic |
LIE ALGEBRA VANISHING COHOMOLOGY LINEAR DEFORMATIONS NILSHADOW TOTAL COHOMOLOGY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology. Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58326 Cagliero, Leandro Roberto; Tirao, Paulo Andres; Total cohomology of solvable lie algebras and linear deformations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 5; 5-2016; 3341-3358 0002-9947 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/58326 |
| identifier_str_mv |
Cagliero, Leandro Roberto; Tirao, Paulo Andres; Total cohomology of solvable lie algebras and linear deformations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 5; 5-2016; 3341-3358 0002-9947 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6424 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2016-368-05/S0002-9947-2015-06424-1/ |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977534851907584 |
| score |
13.087074 |