Total cohomology of solvable lie algebras and linear deformations

Autores
Cagliero, Leandro Roberto; Tirao, Paulo Andres
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
LIE ALGEBRA VANISHING COHOMOLOGY
LINEAR DEFORMATIONS
NILSHADOW
TOTAL COHOMOLOGY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58326

id CONICETDig_0004f07df2cab5c38d2e292cd837258c
oai_identifier_str oai:ri.conicet.gov.ar:11336/58326
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Total cohomology of solvable lie algebras and linear deformationsCagliero, Leandro RobertoTirao, Paulo AndresLIE ALGEBRA VANISHING COHOMOLOGYLINEAR DEFORMATIONSNILSHADOWTOTAL COHOMOLOGYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology.Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58326Cagliero, Leandro Roberto; Tirao, Paulo Andres; Total cohomology of solvable lie algebras and linear deformations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 5; 5-2016; 3341-33580002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6424info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2016-368-05/S0002-9947-2015-06424-1/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:07Zoai:ri.conicet.gov.ar:11336/58326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:07.568CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Total cohomology of solvable lie algebras and linear deformations
title Total cohomology of solvable lie algebras and linear deformations
spellingShingle Total cohomology of solvable lie algebras and linear deformations
Cagliero, Leandro Roberto
LIE ALGEBRA VANISHING COHOMOLOGY
LINEAR DEFORMATIONS
NILSHADOW
TOTAL COHOMOLOGY
title_short Total cohomology of solvable lie algebras and linear deformations
title_full Total cohomology of solvable lie algebras and linear deformations
title_fullStr Total cohomology of solvable lie algebras and linear deformations
title_full_unstemmed Total cohomology of solvable lie algebras and linear deformations
title_sort Total cohomology of solvable lie algebras and linear deformations
dc.creator.none.fl_str_mv Cagliero, Leandro Roberto
Tirao, Paulo Andres
author Cagliero, Leandro Roberto
author_facet Cagliero, Leandro Roberto
Tirao, Paulo Andres
author_role author
author2 Tirao, Paulo Andres
author2_role author
dc.subject.none.fl_str_mv LIE ALGEBRA VANISHING COHOMOLOGY
LINEAR DEFORMATIONS
NILSHADOW
TOTAL COHOMOLOGY
topic LIE ALGEBRA VANISHING COHOMOLOGY
LINEAR DEFORMATIONS
NILSHADOW
TOTAL COHOMOLOGY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology.
Fil: Cagliero, Leandro Roberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Given a finite-dimensional Lie algebra g, let Γo(g) be the set of irreducible g-modules with non-vanishing cohomology. We prove that a gmodule V belongs to Γo(g) only if V is contained in the exterior algebra of the solvable radical s of g, showing in particular that Γo(g) is a finite set and we deduce that H∗(g, V) is an L-module, where L is a fixed subgroup of the connected component of Aut(g) which contains a Levi factor. We describe Γo in some basic examples, including the Borel subalgebras, and we also determine Γo(sn) for an extension sn of the 2-dimensional abelian Lie algebra by the standard filiform Lie algebra fn. To this end, we described the cohomology of fn. We introduce the total cohomology of a Lie algebra g, as (formula presented) and we develop further the theory of linear deformations in order to prove that the total cohomology of a solvable Lie algebra is the cohomology of its nilpotent shadow. Actually we prove that s lies, in the variety of Lie algebras, in a linear subspace of dimension at least dim(s/n)2, n being the nilradical of s, that contains the nilshadow of s and such that all its points have the same total cohomology.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58326
Cagliero, Leandro Roberto; Tirao, Paulo Andres; Total cohomology of solvable lie algebras and linear deformations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 5; 5-2016; 3341-3358
0002-9947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58326
identifier_str_mv Cagliero, Leandro Roberto; Tirao, Paulo Andres; Total cohomology of solvable lie algebras and linear deformations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 5; 5-2016; 3341-3358
0002-9947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6424
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2016-368-05/S0002-9947-2015-06424-1/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269441586364416
score 13.13397