On the thermal models for resistive random access memory circuit simulation
- Autores
- Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; Jiménez Molinos, Francisco; Moreno, Enrique; Maldonado, David; Baldomá, Santiago B.; Moner Al Chawa, Mohamad; de Benito, Carol; Stavrinides, Stavros G.; Suñé, Jordi; Chua, Leon O.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.
Fil: Roldán, Juan B.. Universidad de Granada; España
Fil: González Cordero, Gerardo. Universidad de Granada; España
Fil: Picos, Rodrigo. University of Balearic Islands; España
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jiménez Molinos, Francisco. Universidad de Granada; España
Fil: Moreno, Enrique. Centre National de la Recherche Scientifique; Francia
Fil: Maldonado, David. Universidad de Granada; España
Fil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Moner Al Chawa, Mohamad. Technische Universität Dresden; Alemania
Fil: de Benito, Carol. University of Balearic Islands; España
Fil: Stavrinides, Stavros G.. Thermi University Campus; Grecia
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
Fil: Chua, Leon O.. University of California; Estados Unidos - Materia
-
CIRCUIT SIMULATION
COMPACT MODELING
HEAT EQUATION
NANODEVICES
RESISTIVE MEMORIES
RESISTIVE SWITCHING
THERMAL CONDUCTIVITY
THERMAL MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/165239
Ver los metadatos del registro completo
id |
CONICETDig_f1b1d94f322204bcaa4e6a7132593575 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/165239 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the thermal models for resistive random access memory circuit simulationRoldán, Juan B.González Cordero, GerardoPicos, RodrigoMiranda, EnriquePalumbo, Félix Roberto MarioJiménez Molinos, FranciscoMoreno, EnriqueMaldonado, DavidBaldomá, Santiago B.Moner Al Chawa, Mohamadde Benito, CarolStavrinides, Stavros G.Suñé, JordiChua, Leon O.CIRCUIT SIMULATIONCOMPACT MODELINGHEAT EQUATIONNANODEVICESRESISTIVE MEMORIESRESISTIVE SWITCHINGTHERMAL CONDUCTIVITYTHERMAL MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.Fil: Roldán, Juan B.. Universidad de Granada; EspañaFil: González Cordero, Gerardo. Universidad de Granada; EspañaFil: Picos, Rodrigo. University of Balearic Islands; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; EspañaFil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jiménez Molinos, Francisco. Universidad de Granada; EspañaFil: Moreno, Enrique. Centre National de la Recherche Scientifique; FranciaFil: Maldonado, David. Universidad de Granada; EspañaFil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Moner Al Chawa, Mohamad. Technische Universität Dresden; AlemaniaFil: de Benito, Carol. University of Balearic Islands; EspañaFil: Stavrinides, Stavros G.. Thermi University Campus; GreciaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Chua, Leon O.. University of California; Estados UnidosMDPI AG2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165239Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-462079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/nano11051261info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:38Zoai:ri.conicet.gov.ar:11336/165239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:38.721CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the thermal models for resistive random access memory circuit simulation |
title |
On the thermal models for resistive random access memory circuit simulation |
spellingShingle |
On the thermal models for resistive random access memory circuit simulation Roldán, Juan B. CIRCUIT SIMULATION COMPACT MODELING HEAT EQUATION NANODEVICES RESISTIVE MEMORIES RESISTIVE SWITCHING THERMAL CONDUCTIVITY THERMAL MODEL |
title_short |
On the thermal models for resistive random access memory circuit simulation |
title_full |
On the thermal models for resistive random access memory circuit simulation |
title_fullStr |
On the thermal models for resistive random access memory circuit simulation |
title_full_unstemmed |
On the thermal models for resistive random access memory circuit simulation |
title_sort |
On the thermal models for resistive random access memory circuit simulation |
dc.creator.none.fl_str_mv |
Roldán, Juan B. González Cordero, Gerardo Picos, Rodrigo Miranda, Enrique Palumbo, Félix Roberto Mario Jiménez Molinos, Francisco Moreno, Enrique Maldonado, David Baldomá, Santiago B. Moner Al Chawa, Mohamad de Benito, Carol Stavrinides, Stavros G. Suñé, Jordi Chua, Leon O. |
author |
Roldán, Juan B. |
author_facet |
Roldán, Juan B. González Cordero, Gerardo Picos, Rodrigo Miranda, Enrique Palumbo, Félix Roberto Mario Jiménez Molinos, Francisco Moreno, Enrique Maldonado, David Baldomá, Santiago B. Moner Al Chawa, Mohamad de Benito, Carol Stavrinides, Stavros G. Suñé, Jordi Chua, Leon O. |
author_role |
author |
author2 |
González Cordero, Gerardo Picos, Rodrigo Miranda, Enrique Palumbo, Félix Roberto Mario Jiménez Molinos, Francisco Moreno, Enrique Maldonado, David Baldomá, Santiago B. Moner Al Chawa, Mohamad de Benito, Carol Stavrinides, Stavros G. Suñé, Jordi Chua, Leon O. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CIRCUIT SIMULATION COMPACT MODELING HEAT EQUATION NANODEVICES RESISTIVE MEMORIES RESISTIVE SWITCHING THERMAL CONDUCTIVITY THERMAL MODEL |
topic |
CIRCUIT SIMULATION COMPACT MODELING HEAT EQUATION NANODEVICES RESISTIVE MEMORIES RESISTIVE SWITCHING THERMAL CONDUCTIVITY THERMAL MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth. Fil: Roldán, Juan B.. Universidad de Granada; España Fil: González Cordero, Gerardo. Universidad de Granada; España Fil: Picos, Rodrigo. University of Balearic Islands; España Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Jiménez Molinos, Francisco. Universidad de Granada; España Fil: Moreno, Enrique. Centre National de la Recherche Scientifique; Francia Fil: Maldonado, David. Universidad de Granada; España Fil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Moner Al Chawa, Mohamad. Technische Universität Dresden; Alemania Fil: de Benito, Carol. University of Balearic Islands; España Fil: Stavrinides, Stavros G.. Thermi University Campus; Grecia Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España Fil: Chua, Leon O.. University of California; Estados Unidos |
description |
Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/165239 Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-46 2079-4991 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/165239 |
identifier_str_mv |
Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-46 2079-4991 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/nano11051261 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613812632682496 |
score |
13.070432 |