On the thermal models for resistive random access memory circuit simulation

Autores
Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; Jiménez Molinos, Francisco; Moreno, Enrique; Maldonado, David; Baldomá, Santiago B.; Moner Al Chawa, Mohamad; de Benito, Carol; Stavrinides, Stavros G.; Suñé, Jordi; Chua, Leon O.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.
Fil: Roldán, Juan B.. Universidad de Granada; España
Fil: González Cordero, Gerardo. Universidad de Granada; España
Fil: Picos, Rodrigo. University of Balearic Islands; España
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jiménez Molinos, Francisco. Universidad de Granada; España
Fil: Moreno, Enrique. Centre National de la Recherche Scientifique; Francia
Fil: Maldonado, David. Universidad de Granada; España
Fil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Moner Al Chawa, Mohamad. Technische Universität Dresden; Alemania
Fil: de Benito, Carol. University of Balearic Islands; España
Fil: Stavrinides, Stavros G.. Thermi University Campus; Grecia
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
Fil: Chua, Leon O.. University of California; Estados Unidos
Materia
CIRCUIT SIMULATION
COMPACT MODELING
HEAT EQUATION
NANODEVICES
RESISTIVE MEMORIES
RESISTIVE SWITCHING
THERMAL CONDUCTIVITY
THERMAL MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/165239

id CONICETDig_f1b1d94f322204bcaa4e6a7132593575
oai_identifier_str oai:ri.conicet.gov.ar:11336/165239
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the thermal models for resistive random access memory circuit simulationRoldán, Juan B.González Cordero, GerardoPicos, RodrigoMiranda, EnriquePalumbo, Félix Roberto MarioJiménez Molinos, FranciscoMoreno, EnriqueMaldonado, DavidBaldomá, Santiago B.Moner Al Chawa, Mohamadde Benito, CarolStavrinides, Stavros G.Suñé, JordiChua, Leon O.CIRCUIT SIMULATIONCOMPACT MODELINGHEAT EQUATIONNANODEVICESRESISTIVE MEMORIESRESISTIVE SWITCHINGTHERMAL CONDUCTIVITYTHERMAL MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.Fil: Roldán, Juan B.. Universidad de Granada; EspañaFil: González Cordero, Gerardo. Universidad de Granada; EspañaFil: Picos, Rodrigo. University of Balearic Islands; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; EspañaFil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jiménez Molinos, Francisco. Universidad de Granada; EspañaFil: Moreno, Enrique. Centre National de la Recherche Scientifique; FranciaFil: Maldonado, David. Universidad de Granada; EspañaFil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Moner Al Chawa, Mohamad. Technische Universität Dresden; AlemaniaFil: de Benito, Carol. University of Balearic Islands; EspañaFil: Stavrinides, Stavros G.. Thermi University Campus; GreciaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Chua, Leon O.. University of California; Estados UnidosMDPI AG2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165239Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-462079-4991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/nano11051261info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:38Zoai:ri.conicet.gov.ar:11336/165239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:38.721CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the thermal models for resistive random access memory circuit simulation
title On the thermal models for resistive random access memory circuit simulation
spellingShingle On the thermal models for resistive random access memory circuit simulation
Roldán, Juan B.
CIRCUIT SIMULATION
COMPACT MODELING
HEAT EQUATION
NANODEVICES
RESISTIVE MEMORIES
RESISTIVE SWITCHING
THERMAL CONDUCTIVITY
THERMAL MODEL
title_short On the thermal models for resistive random access memory circuit simulation
title_full On the thermal models for resistive random access memory circuit simulation
title_fullStr On the thermal models for resistive random access memory circuit simulation
title_full_unstemmed On the thermal models for resistive random access memory circuit simulation
title_sort On the thermal models for resistive random access memory circuit simulation
dc.creator.none.fl_str_mv Roldán, Juan B.
González Cordero, Gerardo
Picos, Rodrigo
Miranda, Enrique
Palumbo, Félix Roberto Mario
Jiménez Molinos, Francisco
Moreno, Enrique
Maldonado, David
Baldomá, Santiago B.
Moner Al Chawa, Mohamad
de Benito, Carol
Stavrinides, Stavros G.
Suñé, Jordi
Chua, Leon O.
author Roldán, Juan B.
author_facet Roldán, Juan B.
González Cordero, Gerardo
Picos, Rodrigo
Miranda, Enrique
Palumbo, Félix Roberto Mario
Jiménez Molinos, Francisco
Moreno, Enrique
Maldonado, David
Baldomá, Santiago B.
Moner Al Chawa, Mohamad
de Benito, Carol
Stavrinides, Stavros G.
Suñé, Jordi
Chua, Leon O.
author_role author
author2 González Cordero, Gerardo
Picos, Rodrigo
Miranda, Enrique
Palumbo, Félix Roberto Mario
Jiménez Molinos, Francisco
Moreno, Enrique
Maldonado, David
Baldomá, Santiago B.
Moner Al Chawa, Mohamad
de Benito, Carol
Stavrinides, Stavros G.
Suñé, Jordi
Chua, Leon O.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CIRCUIT SIMULATION
COMPACT MODELING
HEAT EQUATION
NANODEVICES
RESISTIVE MEMORIES
RESISTIVE SWITCHING
THERMAL CONDUCTIVITY
THERMAL MODEL
topic CIRCUIT SIMULATION
COMPACT MODELING
HEAT EQUATION
NANODEVICES
RESISTIVE MEMORIES
RESISTIVE SWITCHING
THERMAL CONDUCTIVITY
THERMAL MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.
Fil: Roldán, Juan B.. Universidad de Granada; España
Fil: González Cordero, Gerardo. Universidad de Granada; España
Fil: Picos, Rodrigo. University of Balearic Islands; España
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jiménez Molinos, Francisco. Universidad de Granada; España
Fil: Moreno, Enrique. Centre National de la Recherche Scientifique; Francia
Fil: Maldonado, David. Universidad de Granada; España
Fil: Baldomá, Santiago B.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Moner Al Chawa, Mohamad. Technische Universität Dresden; Alemania
Fil: de Benito, Carol. University of Balearic Islands; España
Fil: Stavrinides, Stavros G.. Thermi University Campus; Grecia
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
Fil: Chua, Leon O.. University of California; Estados Unidos
description Resistive Random Access Memories (RRAMs) are based on resistive switching (RS) operation and exhibit a set of technological features that make them ideal candidates for applications related to non-volatile memories, neuromorphic computing and hardware cryptography. For the full industrial development of these devices different simulation tools and compact models are needed in order to allow computer-aided design, both at the device and circuit levels. Most of the different RRAM models presented so far in the literature deal with temperature effects since the physical mechanisms behind RS are thermally activated; therefore, an exhaustive description of these effects is essential. As far as we know, no revision papers on thermal models have been pub-lished yet; and that is why we deal with this issue here. Using the heat equation as the starting point, we describe the details of its numerical solution for a conventional RRAM structure and, later on, present models of different complexity to integrate thermal effects in complete compact models that account for the kinetics of the chemical reactions behind resistive switching and the current calcu-lation. In particular, we have accounted for different conductive filament geometries, operation re-gimes, filament lateral heat losses, the use of several temperatures to characterize each conductive filament, among other issues. A 3D numerical solution of the heat equation within a complete RRAM simulator was also taken into account. A general memristor model is also formulated ac-counting for temperature as one of the state variables to describe electron device operation. In ad-dition, to widen the view from different perspectives, we deal with a thermal model contextualized within the quantum point contact formalism. In this manner, the temperature can be accounted for the description of quantum effects in the RRAM charge transport mechanisms. Finally, the ther-mometry of conducting filaments and the corresponding models considering different dielectric materials are tackled in depth.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/165239
Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-46
2079-4991
CONICET Digital
CONICET
url http://hdl.handle.net/11336/165239
identifier_str_mv Roldán, Juan B.; González Cordero, Gerardo; Picos, Rodrigo; Miranda, Enrique; Palumbo, Félix Roberto Mario; et al.; On the thermal models for resistive random access memory circuit simulation; MDPI AG; Nanomaterials; 11; 5; 5-2021; 1-46
2079-4991
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/nano11051261
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613812632682496
score 13.070432