Non-thermal resistive switching in Mott insulator nanowires
- Autores
- Kalcheim, Yoav; Camjayi, Alberto; del Valle, Javier; Salev, Pavel; Rozenberg, Marcelo; Schuller, Ivan K.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators—VO2 and V2O3 we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2 and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators.
Fil: Kalcheim, Yoav. University of California at San Diego; Estados Unidos
Fil: Camjayi, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: del Valle, Javier. University of California at San Diego; Estados Unidos
Fil: Salev, Pavel. University of California at San Diego; Estados Unidos
Fil: Rozenberg, Marcelo. Université Paris Sud; Francia
Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos - Materia
-
RESISTIVE
SWITCHING
MOTT
NON-THERMAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146093
Ver los metadatos del registro completo
id |
CONICETDig_fe4f1637cca76ca343fb3680ba14e482 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146093 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-thermal resistive switching in Mott insulator nanowiresKalcheim, YoavCamjayi, Albertodel Valle, JavierSalev, PavelRozenberg, MarceloSchuller, Ivan K.RESISTIVESWITCHINGMOTTNON-THERMALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators—VO2 and V2O3 we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2 and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators.Fil: Kalcheim, Yoav. University of California at San Diego; Estados UnidosFil: Camjayi, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: del Valle, Javier. University of California at San Diego; Estados UnidosFil: Salev, Pavel. University of California at San Diego; Estados UnidosFil: Rozenberg, Marcelo. Université Paris Sud; FranciaFil: Schuller, Ivan K.. University of California at San Diego; Estados UnidosSpringer2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146093Kalcheim, Yoav; Camjayi, Alberto; del Valle, Javier; Salev, Pavel; Rozenberg, Marcelo; et al.; Non-thermal resistive switching in Mott insulator nanowires; Springer; Nature Communications; 11; 1; 6-2020; 1-92041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-020-16752-1info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-16752-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:26Zoai:ri.conicet.gov.ar:11336/146093instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:26.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-thermal resistive switching in Mott insulator nanowires |
title |
Non-thermal resistive switching in Mott insulator nanowires |
spellingShingle |
Non-thermal resistive switching in Mott insulator nanowires Kalcheim, Yoav RESISTIVE SWITCHING MOTT NON-THERMAL |
title_short |
Non-thermal resistive switching in Mott insulator nanowires |
title_full |
Non-thermal resistive switching in Mott insulator nanowires |
title_fullStr |
Non-thermal resistive switching in Mott insulator nanowires |
title_full_unstemmed |
Non-thermal resistive switching in Mott insulator nanowires |
title_sort |
Non-thermal resistive switching in Mott insulator nanowires |
dc.creator.none.fl_str_mv |
Kalcheim, Yoav Camjayi, Alberto del Valle, Javier Salev, Pavel Rozenberg, Marcelo Schuller, Ivan K. |
author |
Kalcheim, Yoav |
author_facet |
Kalcheim, Yoav Camjayi, Alberto del Valle, Javier Salev, Pavel Rozenberg, Marcelo Schuller, Ivan K. |
author_role |
author |
author2 |
Camjayi, Alberto del Valle, Javier Salev, Pavel Rozenberg, Marcelo Schuller, Ivan K. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
RESISTIVE SWITCHING MOTT NON-THERMAL |
topic |
RESISTIVE SWITCHING MOTT NON-THERMAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators—VO2 and V2O3 we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2 and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators. Fil: Kalcheim, Yoav. University of California at San Diego; Estados Unidos Fil: Camjayi, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: del Valle, Javier. University of California at San Diego; Estados Unidos Fil: Salev, Pavel. University of California at San Diego; Estados Unidos Fil: Rozenberg, Marcelo. Université Paris Sud; Francia Fil: Schuller, Ivan K.. University of California at San Diego; Estados Unidos |
description |
Resistive switching can be achieved in a Mott insulator by applying current/voltage, which triggers an insulator-metal transition (IMT). This phenomenon is key for understanding IMT physics and developing novel memory elements and brain-inspired technology. Despite this, the roles of electric field and Joule heating in the switching process remain controversial. Using nanowires of two archetypal Mott insulators—VO2 and V2O3 we unequivocally show that a purely non-thermal electrical IMT can occur in both materials. The mechanism behind this effect is identified as field-assisted carrier generation leading to a doping driven IMT. This effect can be controlled by similar means in both VO2 and V2O3, suggesting that the proposed mechanism is generally applicable to Mott insulators. The energy consumption associated with the non-thermal IMT is extremely low, rivaling that of state-of-the-art electronics and biological neurons. These findings pave the way towards highly energy-efficient applications of Mott insulators. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146093 Kalcheim, Yoav; Camjayi, Alberto; del Valle, Javier; Salev, Pavel; Rozenberg, Marcelo; et al.; Non-thermal resistive switching in Mott insulator nanowires; Springer; Nature Communications; 11; 1; 6-2020; 1-9 2041-1723 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146093 |
identifier_str_mv |
Kalcheim, Yoav; Camjayi, Alberto; del Valle, Javier; Salev, Pavel; Rozenberg, Marcelo; et al.; Non-thermal resistive switching in Mott insulator nanowires; Springer; Nature Communications; 11; 1; 6-2020; 1-9 2041-1723 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-020-16752-1 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-16752-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614032004218880 |
score |
13.070432 |