Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
- Autores
- Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞.
Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina - Materia
-
Simultaneous optimal control problems
Mixed elliptic problems
Optimality condition
Elliptic variational equalities
Vectorial optimal control problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50990
Ver los metadatos del registro completo
id |
CONICETDig_eb7d26fc0e48bd30b3e5db74533b5ca7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50990 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problemsGariboldi, Claudia MaricelTarzia, Domingo AlbertoSimultaneous optimal control problemsMixed elliptic problemsOptimality conditionElliptic variational equalitiesVectorial optimal control problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞.Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; ArgentinaPolish Acad Sciences Systems Research Inst2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50990Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems; Polish Acad Sciences Systems Research Inst; Control And Cybernetics; 44; 1; 1-2015; 1-130324-8569CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://control.ibspan.waw.pl:3000/contents/show/180?year=2015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:19Zoai:ri.conicet.gov.ar:11336/50990instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:19.487CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
title |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
spellingShingle |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems Gariboldi, Claudia Maricel Simultaneous optimal control problems Mixed elliptic problems Optimality condition Elliptic variational equalities Vectorial optimal control problems |
title_short |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
title_full |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
title_fullStr |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
title_full_unstemmed |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
title_sort |
Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems |
dc.creator.none.fl_str_mv |
Gariboldi, Claudia Maricel Tarzia, Domingo Alberto |
author |
Gariboldi, Claudia Maricel |
author_facet |
Gariboldi, Claudia Maricel Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Simultaneous optimal control problems Mixed elliptic problems Optimality condition Elliptic variational equalities Vectorial optimal control problems |
topic |
Simultaneous optimal control problems Mixed elliptic problems Optimality condition Elliptic variational equalities Vectorial optimal control problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞. Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina |
description |
We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50990 Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems; Polish Acad Sciences Systems Research Inst; Control And Cybernetics; 44; 1; 1-2015; 1-13 0324-8569 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50990 |
identifier_str_mv |
Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems; Polish Acad Sciences Systems Research Inst; Control And Cybernetics; 44; 1; 1-2015; 1-13 0324-8569 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://control.ibspan.waw.pl:3000/contents/show/180?year=2015 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Polish Acad Sciences Systems Research Inst |
publisher.none.fl_str_mv |
Polish Acad Sciences Systems Research Inst |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269631884034048 |
score |
13.13397 |