Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems

Autores
Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞.
Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina
Materia
Simultaneous optimal control problems
Mixed elliptic problems
Optimality condition
Elliptic variational equalities
Vectorial optimal control problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50990

id CONICETDig_eb7d26fc0e48bd30b3e5db74533b5ca7
oai_identifier_str oai:ri.conicet.gov.ar:11336/50990
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problemsGariboldi, Claudia MaricelTarzia, Domingo AlbertoSimultaneous optimal control problemsMixed elliptic problemsOptimality conditionElliptic variational equalitiesVectorial optimal control problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞.Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; ArgentinaPolish Acad Sciences Systems Research Inst2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50990Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems; Polish Acad Sciences Systems Research Inst; Control And Cybernetics; 44; 1; 1-2015; 1-130324-8569CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://control.ibspan.waw.pl:3000/contents/show/180?year=2015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:19Zoai:ri.conicet.gov.ar:11336/50990instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:19.487CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
title Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
spellingShingle Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
Gariboldi, Claudia Maricel
Simultaneous optimal control problems
Mixed elliptic problems
Optimality condition
Elliptic variational equalities
Vectorial optimal control problems
title_short Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
title_full Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
title_fullStr Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
title_full_unstemmed Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
title_sort Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems
dc.creator.none.fl_str_mv Gariboldi, Claudia Maricel
Tarzia, Domingo Alberto
author Gariboldi, Claudia Maricel
author_facet Gariboldi, Claudia Maricel
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv Simultaneous optimal control problems
Mixed elliptic problems
Optimality condition
Elliptic variational equalities
Vectorial optimal control problems
topic Simultaneous optimal control problems
Mixed elliptic problems
Optimality condition
Elliptic variational equalities
Vectorial optimal control problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞.
Fil: Gariboldi, Claudia Maricel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina
description We consider a steady-state heat conduction problem P for the Poisson equation with mixed boundary conditions in a bounded multidimensional domain Ω. We also consider a family of problems Pα for the same Poisson equation with mixed boundary conditions, α > 0 being the heat transfer coefficient defined on a portion Γ1 of the boundary. We formulate simultaneous distributed and Neumann boundary optimal control problems on the internal energy g within Ω and the heat flux q, defined on the complementary portion Γ2 of the boundary of Ω for quadratic cost functional. Here, the control variable is the vector (g, q). We prove existence and uniqueness of the optimal control (g, q) for the system state of P, and (gα, qα) for the system state of Pα, for each α > 0, and we give the corresponding optimality conditions. We prove strong convergence, in suitable Sobolev spaces, of the vectorial optimal controls, system and adjoint states governed by the problems Pα to the corresponding vectorial optimal control, system and adjoint states governed by the problem P, when the parameter α goes to infinity. We also obtain estimations between the solutions of these vectorial optimal control problems and the solution of two scalar optimal control problems characterized by fixed g (with boundary optimal control q) and fixed q (with distributed optimal control g), respectively, for cases both of α > 0 and α = ∞.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50990
Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems; Polish Acad Sciences Systems Research Inst; Control And Cybernetics; 44; 1; 1-2015; 1-13
0324-8569
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50990
identifier_str_mv Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Existence, uniqueness and convergence of simultaneous distributed-boundary optimal control problems; Polish Acad Sciences Systems Research Inst; Control And Cybernetics; 44; 1; 1-2015; 1-13
0324-8569
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://control.ibspan.waw.pl:3000/contents/show/180?year=2015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Polish Acad Sciences Systems Research Inst
publisher.none.fl_str_mv Polish Acad Sciences Systems Research Inst
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269631884034048
score 13.13397