Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems
- Autores
- Bollati, Julieta; Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a steady-state heat conduction problem in a multidimensional bounded domainfor the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion 1 of the boundary and a constant heat flux q in the remaining portion2 of the boundary.Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary 1 with heat transfer coefficient α and external temperature b. We obtain explicitly, for a rectangular domain in R2, an annulus in R2 and a spherical shell in R3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on 1 converge, when α → ∞, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on 1. Also, we analyze the order of convergence in each case, which turns out to be 1/α being new for these kind of elliptic optimal control problems.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Gariboldi, Claudia Maricel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
ELLIPTIC VARIATIONAL INEQUALITIES
DISTRIBUTED AND BOUNDARY OPTIMAL CONTROL PROBLEMS
MIXED BOUNDARY CONDITIONS
EXPLICIT SOLUTIONS
OPTIMALITY CONDITIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154219
Ver los metadatos del registro completo
id |
CONICETDig_7b146abb9378aa0b136036aff438ffc9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154219 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problemsBollati, JulietaGariboldi, Claudia MaricelTarzia, Domingo AlbertoELLIPTIC VARIATIONAL INEQUALITIESDISTRIBUTED AND BOUNDARY OPTIMAL CONTROL PROBLEMSMIXED BOUNDARY CONDITIONSEXPLICIT SOLUTIONSOPTIMALITY CONDITIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a steady-state heat conduction problem in a multidimensional bounded domainfor the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion 1 of the boundary and a constant heat flux q in the remaining portion2 of the boundary.Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary 1 with heat transfer coefficient α and external temperature b. We obtain explicitly, for a rectangular domain in R2, an annulus in R2 and a spherical shell in R3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on 1 converge, when α → ∞, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on 1. Also, we analyze the order of convergence in each case, which turns out to be 1/α being new for these kind of elliptic optimal control problems.Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Gariboldi, Claudia Maricel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaSpringer Verlag Berlín2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154219Bollati, Julieta; Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 64; 10-2020; 283-3111598-58651865-2085CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12190-020-01355-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s12190-020-01355-2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1902.09261info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:07Zoai:ri.conicet.gov.ar:11336/154219instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:07.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
title |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
spellingShingle |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems Bollati, Julieta ELLIPTIC VARIATIONAL INEQUALITIES DISTRIBUTED AND BOUNDARY OPTIMAL CONTROL PROBLEMS MIXED BOUNDARY CONDITIONS EXPLICIT SOLUTIONS OPTIMALITY CONDITIONS |
title_short |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
title_full |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
title_fullStr |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
title_full_unstemmed |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
title_sort |
Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems |
dc.creator.none.fl_str_mv |
Bollati, Julieta Gariboldi, Claudia Maricel Tarzia, Domingo Alberto |
author |
Bollati, Julieta |
author_facet |
Bollati, Julieta Gariboldi, Claudia Maricel Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Gariboldi, Claudia Maricel Tarzia, Domingo Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ELLIPTIC VARIATIONAL INEQUALITIES DISTRIBUTED AND BOUNDARY OPTIMAL CONTROL PROBLEMS MIXED BOUNDARY CONDITIONS EXPLICIT SOLUTIONS OPTIMALITY CONDITIONS |
topic |
ELLIPTIC VARIATIONAL INEQUALITIES DISTRIBUTED AND BOUNDARY OPTIMAL CONTROL PROBLEMS MIXED BOUNDARY CONDITIONS EXPLICIT SOLUTIONS OPTIMALITY CONDITIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a steady-state heat conduction problem in a multidimensional bounded domainfor the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion 1 of the boundary and a constant heat flux q in the remaining portion2 of the boundary.Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary 1 with heat transfer coefficient α and external temperature b. We obtain explicitly, for a rectangular domain in R2, an annulus in R2 and a spherical shell in R3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on 1 converge, when α → ∞, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on 1. Also, we analyze the order of convergence in each case, which turns out to be 1/α being new for these kind of elliptic optimal control problems. Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Gariboldi, Claudia Maricel. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
We consider a steady-state heat conduction problem in a multidimensional bounded domainfor the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion 1 of the boundary and a constant heat flux q in the remaining portion2 of the boundary.Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary 1 with heat transfer coefficient α and external temperature b. We obtain explicitly, for a rectangular domain in R2, an annulus in R2 and a spherical shell in R3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on 1 converge, when α → ∞, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on 1. Also, we analyze the order of convergence in each case, which turns out to be 1/α being new for these kind of elliptic optimal control problems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154219 Bollati, Julieta; Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 64; 10-2020; 283-311 1598-5865 1865-2085 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154219 |
identifier_str_mv |
Bollati, Julieta; Gariboldi, Claudia Maricel; Tarzia, Domingo Alberto; Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems; Springer Verlag Berlín; Journal of Applied Mathematics and Computing; 64; 10-2020; 283-311 1598-5865 1865-2085 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12190-020-01355-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12190-020-01355-2 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1902.09261 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag Berlín |
publisher.none.fl_str_mv |
Springer Verlag Berlín |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269325583450112 |
score |
13.13397 |