Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR
- Autores
- Gagneten, Maite; Buera, Maria del Pilar; Rodríguez, Silvio David
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Adulteration of canola oil with four potential edible oils was analysed using FT‐IR and chemometric methods. The adulterants (corn, peanut, soybean, and sunflower oils) were studied in four different proportions (canola oil + adulterant oils: 90+10, 95+5, 98+2 and 99+1 in volume). Excellent classification results were obtained when multi‐class approaches were performed with a maximum error of 3%, using 1630 or 16 wavenumbers as variables. In the case of one‐class approaches, the selection of variables (16 wavenumbers) was necessary, improving the classification error to 5%. The differences observed using the different methods were related to the nature of each model depending on how the boundaries are set in each of them, responding either to a PCA‐based or PLS‐based algorithm.
Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
Fil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina - Materia
-
canola oil
FT-IR
chemometric analysis
food adulteration
SIMCA
PLS-DA
OC-PLS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/145797
Ver los metadatos del registro completo
id |
CONICETDig_f03ae8666aa481a6bd399263d5ca75be |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/145797 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IRGagneten, MaiteBuera, Maria del PilarRodríguez, Silvio Davidcanola oilFT-IRchemometric analysisfood adulterationSIMCAPLS-DAOC-PLShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Adulteration of canola oil with four potential edible oils was analysed using FT‐IR and chemometric methods. The adulterants (corn, peanut, soybean, and sunflower oils) were studied in four different proportions (canola oil + adulterant oils: 90+10, 95+5, 98+2 and 99+1 in volume). Excellent classification results were obtained when multi‐class approaches were performed with a maximum error of 3%, using 1630 or 16 wavenumbers as variables. In the case of one‐class approaches, the selection of variables (16 wavenumbers) was necessary, improving the classification error to 5%. The differences observed using the different methods were related to the nature of each model depending on how the boundaries are set in each of them, responding either to a PCA‐based or PLS‐based algorithm.Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; ArgentinaFil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; ArgentinaFil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaWiley Blackwell Publishing, Inc2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145797Gagneten, Maite; Buera, Maria del Pilar; Rodríguez, Silvio David; Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR; Wiley Blackwell Publishing, Inc; International Journal of Food Science and Technology; 10-2020; 1-190950-5423CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/IJFS.14866info:eu-repo/semantics/altIdentifier/url/https://ifst.onlinelibrary.wiley.com/doi/10.1111/ijfs.14866info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:15Zoai:ri.conicet.gov.ar:11336/145797instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:15.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
title |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
spellingShingle |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR Gagneten, Maite canola oil FT-IR chemometric analysis food adulteration SIMCA PLS-DA OC-PLS |
title_short |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
title_full |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
title_fullStr |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
title_full_unstemmed |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
title_sort |
Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR |
dc.creator.none.fl_str_mv |
Gagneten, Maite Buera, Maria del Pilar Rodríguez, Silvio David |
author |
Gagneten, Maite |
author_facet |
Gagneten, Maite Buera, Maria del Pilar Rodríguez, Silvio David |
author_role |
author |
author2 |
Buera, Maria del Pilar Rodríguez, Silvio David |
author2_role |
author author |
dc.subject.none.fl_str_mv |
canola oil FT-IR chemometric analysis food adulteration SIMCA PLS-DA OC-PLS |
topic |
canola oil FT-IR chemometric analysis food adulteration SIMCA PLS-DA OC-PLS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Adulteration of canola oil with four potential edible oils was analysed using FT‐IR and chemometric methods. The adulterants (corn, peanut, soybean, and sunflower oils) were studied in four different proportions (canola oil + adulterant oils: 90+10, 95+5, 98+2 and 99+1 in volume). Excellent classification results were obtained when multi‐class approaches were performed with a maximum error of 3%, using 1630 or 16 wavenumbers as variables. In the case of one‐class approaches, the selection of variables (16 wavenumbers) was necessary, improving the classification error to 5%. The differences observed using the different methods were related to the nature of each model depending on how the boundaries are set in each of them, responding either to a PCA‐based or PLS‐based algorithm. Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina Fil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina |
description |
Adulteration of canola oil with four potential edible oils was analysed using FT‐IR and chemometric methods. The adulterants (corn, peanut, soybean, and sunflower oils) were studied in four different proportions (canola oil + adulterant oils: 90+10, 95+5, 98+2 and 99+1 in volume). Excellent classification results were obtained when multi‐class approaches were performed with a maximum error of 3%, using 1630 or 16 wavenumbers as variables. In the case of one‐class approaches, the selection of variables (16 wavenumbers) was necessary, improving the classification error to 5%. The differences observed using the different methods were related to the nature of each model depending on how the boundaries are set in each of them, responding either to a PCA‐based or PLS‐based algorithm. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/145797 Gagneten, Maite; Buera, Maria del Pilar; Rodríguez, Silvio David; Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR; Wiley Blackwell Publishing, Inc; International Journal of Food Science and Technology; 10-2020; 1-19 0950-5423 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/145797 |
identifier_str_mv |
Gagneten, Maite; Buera, Maria del Pilar; Rodríguez, Silvio David; Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT‐IR; Wiley Blackwell Publishing, Inc; International Journal of Food Science and Technology; 10-2020; 1-19 0950-5423 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/IJFS.14866 info:eu-repo/semantics/altIdentifier/url/https://ifst.onlinelibrary.wiley.com/doi/10.1111/ijfs.14866 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268845878804480 |
score |
13.13397 |