Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study
- Autores
- de Girolamo, Annalisa; Arroyo, Marcia Carolina; Cervellieri, Salvatore; Cortese, Marina; Pascale, Michelangelo; Logrieco, Antonio Francesco; Lippolis, Vincenzo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fourier transform (FT) infrared spectroscopy, in combination with Partial-Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA), was used to discriminate commercial durum wheat pasta from Italy and Argentina for common wheat adulteration. Samples were analyzed by both near- and mid-infrared spectroscopy (FT-NIR, FT-MIR) and the performance results were compared. Classification models were devel oped and validated using Argentinean and Italian durum wheat pasta samples containing common wheat at levels up to 28% and lower than 0.5%, respectively (as determined by ELISA method). The first LDA and PLS-DA models grouped samples into three-classes, i.e. common wheat ≤1%, from 1 to ≤5% and > 5%; while the second LDA and PLS-DA models grouped samples into two-classes using a cut-off of 2% common wheat. The accuracy of the validated models were between 80 and 95% for the three-classes approach and between 91 and 97% for the two-classes approach. In general, the three-classes approach provided better results in the FT-NIR range while the two-classes approach provided comparable results in both spectral ranges. Results indicate that FT-NIR and FT-MIR spectroscopy, in combination with chemometric models, represent a promising, inexpensive and easy-to-use screening tool to rapidly analyze durum wheat pasta samples for monitoring common wheat adulteration.
Fil: de Girolamo, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia
Fil: Arroyo, Marcia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Cervellieri, Salvatore. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia
Fil: Cortese, Marina. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia
Fil: Pascale, Michelangelo. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia
Fil: Logrieco, Antonio Francesco. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia
Fil: Lippolis, Vincenzo. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia - Materia
-
FT-NIR/MIR SPECTROSCOPY
DURUM WHEATPASTA ADULTERATION
RAPID METHOD
LDA
PLS-DA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/141850
Ver los metadatos del registro completo
id |
CONICETDig_45c56a37b0b0df8e077141c5a176e6ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/141850 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case studyde Girolamo, AnnalisaArroyo, Marcia CarolinaCervellieri, SalvatoreCortese, MarinaPascale, MichelangeloLogrieco, Antonio FrancescoLippolis, VincenzoFT-NIR/MIR SPECTROSCOPYDURUM WHEATPASTA ADULTERATIONRAPID METHODLDAPLS-DAhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Fourier transform (FT) infrared spectroscopy, in combination with Partial-Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA), was used to discriminate commercial durum wheat pasta from Italy and Argentina for common wheat adulteration. Samples were analyzed by both near- and mid-infrared spectroscopy (FT-NIR, FT-MIR) and the performance results were compared. Classification models were devel oped and validated using Argentinean and Italian durum wheat pasta samples containing common wheat at levels up to 28% and lower than 0.5%, respectively (as determined by ELISA method). The first LDA and PLS-DA models grouped samples into three-classes, i.e. common wheat ≤1%, from 1 to ≤5% and > 5%; while the second LDA and PLS-DA models grouped samples into two-classes using a cut-off of 2% common wheat. The accuracy of the validated models were between 80 and 95% for the three-classes approach and between 91 and 97% for the two-classes approach. In general, the three-classes approach provided better results in the FT-NIR range while the two-classes approach provided comparable results in both spectral ranges. Results indicate that FT-NIR and FT-MIR spectroscopy, in combination with chemometric models, represent a promising, inexpensive and easy-to-use screening tool to rapidly analyze durum wheat pasta samples for monitoring common wheat adulteration.Fil: de Girolamo, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; ItaliaFil: Arroyo, Marcia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Cervellieri, Salvatore. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; ItaliaFil: Cortese, Marina. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; ItaliaFil: Pascale, Michelangelo. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; ItaliaFil: Logrieco, Antonio Francesco. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; ItaliaFil: Lippolis, Vincenzo. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; ItaliaElsevier Science2020-04-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141850de Girolamo, Annalisa; Arroyo, Marcia Carolina; Cervellieri, Salvatore; Cortese, Marina; Pascale, Michelangelo; et al.; Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study; Elsevier Science; LWT - Food Science and Technology; 127; 9-4-2020; 1-8; 1093680023-6438CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0023643820303571info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2020.109368info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:48Zoai:ri.conicet.gov.ar:11336/141850instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:48.84CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
title |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
spellingShingle |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study de Girolamo, Annalisa FT-NIR/MIR SPECTROSCOPY DURUM WHEATPASTA ADULTERATION RAPID METHOD LDA PLS-DA |
title_short |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
title_full |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
title_fullStr |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
title_full_unstemmed |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
title_sort |
Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study |
dc.creator.none.fl_str_mv |
de Girolamo, Annalisa Arroyo, Marcia Carolina Cervellieri, Salvatore Cortese, Marina Pascale, Michelangelo Logrieco, Antonio Francesco Lippolis, Vincenzo |
author |
de Girolamo, Annalisa |
author_facet |
de Girolamo, Annalisa Arroyo, Marcia Carolina Cervellieri, Salvatore Cortese, Marina Pascale, Michelangelo Logrieco, Antonio Francesco Lippolis, Vincenzo |
author_role |
author |
author2 |
Arroyo, Marcia Carolina Cervellieri, Salvatore Cortese, Marina Pascale, Michelangelo Logrieco, Antonio Francesco Lippolis, Vincenzo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
FT-NIR/MIR SPECTROSCOPY DURUM WHEATPASTA ADULTERATION RAPID METHOD LDA PLS-DA |
topic |
FT-NIR/MIR SPECTROSCOPY DURUM WHEATPASTA ADULTERATION RAPID METHOD LDA PLS-DA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fourier transform (FT) infrared spectroscopy, in combination with Partial-Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA), was used to discriminate commercial durum wheat pasta from Italy and Argentina for common wheat adulteration. Samples were analyzed by both near- and mid-infrared spectroscopy (FT-NIR, FT-MIR) and the performance results were compared. Classification models were devel oped and validated using Argentinean and Italian durum wheat pasta samples containing common wheat at levels up to 28% and lower than 0.5%, respectively (as determined by ELISA method). The first LDA and PLS-DA models grouped samples into three-classes, i.e. common wheat ≤1%, from 1 to ≤5% and > 5%; while the second LDA and PLS-DA models grouped samples into two-classes using a cut-off of 2% common wheat. The accuracy of the validated models were between 80 and 95% for the three-classes approach and between 91 and 97% for the two-classes approach. In general, the three-classes approach provided better results in the FT-NIR range while the two-classes approach provided comparable results in both spectral ranges. Results indicate that FT-NIR and FT-MIR spectroscopy, in combination with chemometric models, represent a promising, inexpensive and easy-to-use screening tool to rapidly analyze durum wheat pasta samples for monitoring common wheat adulteration. Fil: de Girolamo, Annalisa. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia Fil: Arroyo, Marcia Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Cervellieri, Salvatore. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia Fil: Cortese, Marina. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia Fil: Pascale, Michelangelo. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia Fil: Logrieco, Antonio Francesco. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia Fil: Lippolis, Vincenzo. Consiglio Nazionale delle Ricerche. Istituto di Scienze delle Produzioni Alimentari; Italia |
description |
Fourier transform (FT) infrared spectroscopy, in combination with Partial-Least Squares Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA), was used to discriminate commercial durum wheat pasta from Italy and Argentina for common wheat adulteration. Samples were analyzed by both near- and mid-infrared spectroscopy (FT-NIR, FT-MIR) and the performance results were compared. Classification models were devel oped and validated using Argentinean and Italian durum wheat pasta samples containing common wheat at levels up to 28% and lower than 0.5%, respectively (as determined by ELISA method). The first LDA and PLS-DA models grouped samples into three-classes, i.e. common wheat ≤1%, from 1 to ≤5% and > 5%; while the second LDA and PLS-DA models grouped samples into two-classes using a cut-off of 2% common wheat. The accuracy of the validated models were between 80 and 95% for the three-classes approach and between 91 and 97% for the two-classes approach. In general, the three-classes approach provided better results in the FT-NIR range while the two-classes approach provided comparable results in both spectral ranges. Results indicate that FT-NIR and FT-MIR spectroscopy, in combination with chemometric models, represent a promising, inexpensive and easy-to-use screening tool to rapidly analyze durum wheat pasta samples for monitoring common wheat adulteration. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/141850 de Girolamo, Annalisa; Arroyo, Marcia Carolina; Cervellieri, Salvatore; Cortese, Marina; Pascale, Michelangelo; et al.; Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study; Elsevier Science; LWT - Food Science and Technology; 127; 9-4-2020; 1-8; 109368 0023-6438 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/141850 |
identifier_str_mv |
de Girolamo, Annalisa; Arroyo, Marcia Carolina; Cervellieri, Salvatore; Cortese, Marina; Pascale, Michelangelo; et al.; Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: A case study; Elsevier Science; LWT - Food Science and Technology; 127; 9-4-2020; 1-8; 109368 0023-6438 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0023643820303571 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2020.109368 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269773598031872 |
score |
13.13397 |