Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods

Autores
Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Rolandelli, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Buera, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
CHEMOMETRIC METHODS
FT-IR
PLS-DA
QUINOA FLOUR ADULTERATION
SIMCA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113187

id CONICETDig_97bb874139bf7ff9ffc8f063a020d4d8
oai_identifier_str oai:ri.conicet.gov.ar:11336/113187
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methodsRodríguez, Silvio DavidRolandelli, GuidoBuera, Maria del PilarCHEMOMETRIC METHODSFT-IRPLS-DAQUINOA FLOUR ADULTERATIONSIMCAhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Rolandelli, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Buera, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113187Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar; Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods; Elsevier; Food Chemistry; 274; 2-2019; 392-4010308-8146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814618315590info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2018.08.140info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:19Zoai:ri.conicet.gov.ar:11336/113187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:19.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
title Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
spellingShingle Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
Rodríguez, Silvio David
CHEMOMETRIC METHODS
FT-IR
PLS-DA
QUINOA FLOUR ADULTERATION
SIMCA
title_short Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
title_full Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
title_fullStr Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
title_full_unstemmed Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
title_sort Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
dc.creator.none.fl_str_mv Rodríguez, Silvio David
Rolandelli, Guido
Buera, Maria del Pilar
author Rodríguez, Silvio David
author_facet Rodríguez, Silvio David
Rolandelli, Guido
Buera, Maria del Pilar
author_role author
author2 Rolandelli, Guido
Buera, Maria del Pilar
author2_role author
author
dc.subject.none.fl_str_mv CHEMOMETRIC METHODS
FT-IR
PLS-DA
QUINOA FLOUR ADULTERATION
SIMCA
topic CHEMOMETRIC METHODS
FT-IR
PLS-DA
QUINOA FLOUR ADULTERATION
SIMCA
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Rolandelli, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Buera, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
description Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113187
Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar; Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods; Elsevier; Food Chemistry; 274; 2-2019; 392-401
0308-8146
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113187
identifier_str_mv Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar; Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods; Elsevier; Food Chemistry; 274; 2-2019; 392-401
0308-8146
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814618315590
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2018.08.140
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268657947770880
score 13.13397