Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods
- Autores
- Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Rolandelli, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Buera, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
CHEMOMETRIC METHODS
FT-IR
PLS-DA
QUINOA FLOUR ADULTERATION
SIMCA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113187
Ver los metadatos del registro completo
id |
CONICETDig_97bb874139bf7ff9ffc8f063a020d4d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113187 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methodsRodríguez, Silvio DavidRolandelli, GuidoBuera, Maria del PilarCHEMOMETRIC METHODSFT-IRPLS-DAQUINOA FLOUR ADULTERATIONSIMCAhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Rolandelli, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Buera, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113187Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar; Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods; Elsevier; Food Chemistry; 274; 2-2019; 392-4010308-8146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814618315590info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2018.08.140info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:19Zoai:ri.conicet.gov.ar:11336/113187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:19.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
title |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
spellingShingle |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods Rodríguez, Silvio David CHEMOMETRIC METHODS FT-IR PLS-DA QUINOA FLOUR ADULTERATION SIMCA |
title_short |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
title_full |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
title_fullStr |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
title_full_unstemmed |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
title_sort |
Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods |
dc.creator.none.fl_str_mv |
Rodríguez, Silvio David Rolandelli, Guido Buera, Maria del Pilar |
author |
Rodríguez, Silvio David |
author_facet |
Rodríguez, Silvio David Rolandelli, Guido Buera, Maria del Pilar |
author_role |
author |
author2 |
Rolandelli, Guido Buera, Maria del Pilar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CHEMOMETRIC METHODS FT-IR PLS-DA QUINOA FLOUR ADULTERATION SIMCA |
topic |
CHEMOMETRIC METHODS FT-IR PLS-DA QUINOA FLOUR ADULTERATION SIMCA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants. Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Rolandelli, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Buera, Maria del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113187 Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar; Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods; Elsevier; Food Chemistry; 274; 2-2019; 392-401 0308-8146 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113187 |
identifier_str_mv |
Rodríguez, Silvio David; Rolandelli, Guido; Buera, Maria del Pilar; Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods; Elsevier; Food Chemistry; 274; 2-2019; 392-401 0308-8146 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814618315590 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2018.08.140 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268657947770880 |
score |
13.13397 |