Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety
- Autores
- Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Alcaraz, Mirta Raquel; Ugulino de Araújo, Mário C.; Camiña, José Manuel; Goicoechea, Hector Casimiro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper reports the modeling of excitation-emission matrices for classification of Argentinean white wines according to the grape variety employing chemometric tools for pattern recognition. The discriminative power of the data was first investigated using Principal Component Analysis (PCA) and Parallel Factor Analysis (PARAFAC). The score plots showed strong overlapping between classes. A forty-one samples set was partitioned into training and test sets by the Kennard-Stone algorithm. The algorithms evaluated were SIMCA, N- and U-PLS-DA and SPA-LDA. The fit of the implemented models was assessed by mean of accuracy, sensitivity and specificity. These models were then used to assign the type of grape of the wines corresponding to the twenty samples test set. The best results were obtained for U-PLS-DA and SPA-LDA with 76% and 80% accuracy.
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: de Araújo Gomes, Adriano. Universidade Federal da Paraíba; Brasil
Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Ugulino de Araújo, Mário C.. Universidade Federal da Paraíba; Brasil
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina - Materia
-
White Wine
Excitation-Emission Matrices
Simca
U-Pls-Da
N-Pls-Da
Spa-Lda - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46313
Ver los metadatos del registro completo
id |
CONICETDig_3f7e5ab774579e36ef345af40a646635 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46313 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape varietyAzcarate, Silvana Marielade Araújo Gomes, AdrianoAlcaraz, Mirta RaquelUgulino de Araújo, Mário C.Camiña, José ManuelGoicoechea, Hector CasimiroWhite WineExcitation-Emission MatricesSimcaU-Pls-DaN-Pls-DaSpa-Ldahttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This paper reports the modeling of excitation-emission matrices for classification of Argentinean white wines according to the grape variety employing chemometric tools for pattern recognition. The discriminative power of the data was first investigated using Principal Component Analysis (PCA) and Parallel Factor Analysis (PARAFAC). The score plots showed strong overlapping between classes. A forty-one samples set was partitioned into training and test sets by the Kennard-Stone algorithm. The algorithms evaluated were SIMCA, N- and U-PLS-DA and SPA-LDA. The fit of the implemented models was assessed by mean of accuracy, sensitivity and specificity. These models were then used to assign the type of grape of the wines corresponding to the twenty samples test set. The best results were obtained for U-PLS-DA and SPA-LDA with 76% and 80% accuracy.Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: de Araújo Gomes, Adriano. Universidade Federal da Paraíba; BrasilFil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Ugulino de Araújo, Mário C.. Universidade Federal da Paraíba; BrasilFil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaElsevier2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46313Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Alcaraz, Mirta Raquel; Ugulino de Araújo, Mário C.; Camiña, José Manuel; et al.; Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety; Elsevier; Food Chemistry; 184; 10-2015; 214-2190308-8146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2015.03.081info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814615004537info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:46Zoai:ri.conicet.gov.ar:11336/46313instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:46.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
title |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
spellingShingle |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety Azcarate, Silvana Mariela White Wine Excitation-Emission Matrices Simca U-Pls-Da N-Pls-Da Spa-Lda |
title_short |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
title_full |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
title_fullStr |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
title_full_unstemmed |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
title_sort |
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety |
dc.creator.none.fl_str_mv |
Azcarate, Silvana Mariela de Araújo Gomes, Adriano Alcaraz, Mirta Raquel Ugulino de Araújo, Mário C. Camiña, José Manuel Goicoechea, Hector Casimiro |
author |
Azcarate, Silvana Mariela |
author_facet |
Azcarate, Silvana Mariela de Araújo Gomes, Adriano Alcaraz, Mirta Raquel Ugulino de Araújo, Mário C. Camiña, José Manuel Goicoechea, Hector Casimiro |
author_role |
author |
author2 |
de Araújo Gomes, Adriano Alcaraz, Mirta Raquel Ugulino de Araújo, Mário C. Camiña, José Manuel Goicoechea, Hector Casimiro |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
White Wine Excitation-Emission Matrices Simca U-Pls-Da N-Pls-Da Spa-Lda |
topic |
White Wine Excitation-Emission Matrices Simca U-Pls-Da N-Pls-Da Spa-Lda |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper reports the modeling of excitation-emission matrices for classification of Argentinean white wines according to the grape variety employing chemometric tools for pattern recognition. The discriminative power of the data was first investigated using Principal Component Analysis (PCA) and Parallel Factor Analysis (PARAFAC). The score plots showed strong overlapping between classes. A forty-one samples set was partitioned into training and test sets by the Kennard-Stone algorithm. The algorithms evaluated were SIMCA, N- and U-PLS-DA and SPA-LDA. The fit of the implemented models was assessed by mean of accuracy, sensitivity and specificity. These models were then used to assign the type of grape of the wines corresponding to the twenty samples test set. The best results were obtained for U-PLS-DA and SPA-LDA with 76% and 80% accuracy. Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: de Araújo Gomes, Adriano. Universidade Federal da Paraíba; Brasil Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Ugulino de Araújo, Mário C.. Universidade Federal da Paraíba; Brasil Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina |
description |
This paper reports the modeling of excitation-emission matrices for classification of Argentinean white wines according to the grape variety employing chemometric tools for pattern recognition. The discriminative power of the data was first investigated using Principal Component Analysis (PCA) and Parallel Factor Analysis (PARAFAC). The score plots showed strong overlapping between classes. A forty-one samples set was partitioned into training and test sets by the Kennard-Stone algorithm. The algorithms evaluated were SIMCA, N- and U-PLS-DA and SPA-LDA. The fit of the implemented models was assessed by mean of accuracy, sensitivity and specificity. These models were then used to assign the type of grape of the wines corresponding to the twenty samples test set. The best results were obtained for U-PLS-DA and SPA-LDA with 76% and 80% accuracy. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46313 Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Alcaraz, Mirta Raquel; Ugulino de Araújo, Mário C.; Camiña, José Manuel; et al.; Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety; Elsevier; Food Chemistry; 184; 10-2015; 214-219 0308-8146 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46313 |
identifier_str_mv |
Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Alcaraz, Mirta Raquel; Ugulino de Araújo, Mário C.; Camiña, José Manuel; et al.; Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety; Elsevier; Food Chemistry; 184; 10-2015; 214-219 0308-8146 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2015.03.081 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814615004537 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269116249931776 |
score |
13.13397 |