FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils
- Autores
- Rodríguez, Silvio David; Gagneten, Maite; Farroni, Abel Eduardo; Percibaldi, Nora Mabel; Buera, Maria del Pilar
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%.
Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina
Fil: Farroni, Abel Eduardo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Percibaldi, Nora Mabel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina
Fil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina - Materia
-
CHIA OIL
FOOD ADULTERATION
FT-IR
OC-PLS
SESAME OIL
SIMCA
UNTARGETED ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163618
Ver los metadatos del registro completo
id |
CONICETDig_7cdba4d50a48d555e7760381f3e7316d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163618 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oilsRodríguez, Silvio DavidGagneten, MaiteFarroni, Abel EduardoPercibaldi, Nora MabelBuera, Maria del PilarCHIA OILFOOD ADULTERATIONFT-IROC-PLSSESAME OILSIMCAUNTARGETED ANALYSIShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%.Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; ArgentinaFil: Farroni, Abel Eduardo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Percibaldi, Nora Mabel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; ArgentinaElsevier2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163618Rodríguez, Silvio David; Gagneten, Maite; Farroni, Abel Eduardo; Percibaldi, Nora Mabel; Buera, Maria del Pilar; FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils; Elsevier; Food Control; 105; 11-2019; 78-850956-7135CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0956713519302336info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2019.05.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:35Zoai:ri.conicet.gov.ar:11336/163618instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:35.461CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
spellingShingle |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils Rodríguez, Silvio David CHIA OIL FOOD ADULTERATION FT-IR OC-PLS SESAME OIL SIMCA UNTARGETED ANALYSIS |
title_short |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_full |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_fullStr |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_full_unstemmed |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
title_sort |
FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils |
dc.creator.none.fl_str_mv |
Rodríguez, Silvio David Gagneten, Maite Farroni, Abel Eduardo Percibaldi, Nora Mabel Buera, Maria del Pilar |
author |
Rodríguez, Silvio David |
author_facet |
Rodríguez, Silvio David Gagneten, Maite Farroni, Abel Eduardo Percibaldi, Nora Mabel Buera, Maria del Pilar |
author_role |
author |
author2 |
Gagneten, Maite Farroni, Abel Eduardo Percibaldi, Nora Mabel Buera, Maria del Pilar |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CHIA OIL FOOD ADULTERATION FT-IR OC-PLS SESAME OIL SIMCA UNTARGETED ANALYSIS |
topic |
CHIA OIL FOOD ADULTERATION FT-IR OC-PLS SESAME OIL SIMCA UNTARGETED ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%. Fil: Rodríguez, Silvio David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Gagneten, Maite. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina Fil: Farroni, Abel Eduardo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina Fil: Percibaldi, Nora Mabel. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; Argentina Fil: Buera, Maria del Pilar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Químicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Químicos; Argentina |
description |
Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163618 Rodríguez, Silvio David; Gagneten, Maite; Farroni, Abel Eduardo; Percibaldi, Nora Mabel; Buera, Maria del Pilar; FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils; Elsevier; Food Control; 105; 11-2019; 78-85 0956-7135 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163618 |
identifier_str_mv |
Rodríguez, Silvio David; Gagneten, Maite; Farroni, Abel Eduardo; Percibaldi, Nora Mabel; Buera, Maria del Pilar; FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils; Elsevier; Food Control; 105; 11-2019; 78-85 0956-7135 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0956713519302336 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2019.05.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268804685496320 |
score |
13.13397 |