Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models

Autores
Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Paula, Mariano. Centro de Investigaciones En Física E Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; Argentina
Materia
BAYESIAN FILTERING
GAUSSIAN PROCESSES
GLYCEMIC VARIABILITY
PLASMA INSULIN ESTIMATION
STOCHASTIC MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91524

id CONICETDig_ed81b38826ff52cfa18a5825fff14cbf
oai_identifier_str oai:ri.conicet.gov.ar:11336/91524
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process modelsAvila, Luis Omarde Paula, MarianoMartínez, Ernesto CarlosErrecalde, Marcelo LuisBAYESIAN FILTERINGGAUSSIAN PROCESSESGLYCEMIC VARIABILITYPLASMA INSULIN ESTIMATIONSTOCHASTIC MODELhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.Fil: Avila, Luis Omar. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Paula, Mariano. Centro de Investigaciones En Física E Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; ArgentinaElsevier2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91524Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-721746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809418300260info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2018.01.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:59Zoai:ri.conicet.gov.ar:11336/91524instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:59.572CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
title Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
spellingShingle Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
Avila, Luis Omar
BAYESIAN FILTERING
GAUSSIAN PROCESSES
GLYCEMIC VARIABILITY
PLASMA INSULIN ESTIMATION
STOCHASTIC MODEL
title_short Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
title_full Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
title_fullStr Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
title_full_unstemmed Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
title_sort Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
dc.creator.none.fl_str_mv Avila, Luis Omar
de Paula, Mariano
Martínez, Ernesto Carlos
Errecalde, Marcelo Luis
author Avila, Luis Omar
author_facet Avila, Luis Omar
de Paula, Mariano
Martínez, Ernesto Carlos
Errecalde, Marcelo Luis
author_role author
author2 de Paula, Mariano
Martínez, Ernesto Carlos
Errecalde, Marcelo Luis
author2_role author
author
author
dc.subject.none.fl_str_mv BAYESIAN FILTERING
GAUSSIAN PROCESSES
GLYCEMIC VARIABILITY
PLASMA INSULIN ESTIMATION
STOCHASTIC MODEL
topic BAYESIAN FILTERING
GAUSSIAN PROCESSES
GLYCEMIC VARIABILITY
PLASMA INSULIN ESTIMATION
STOCHASTIC MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Paula, Mariano. Centro de Investigaciones En Física E Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; Argentina
description The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91524
Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-72
1746-8094
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91524
identifier_str_mv Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-72
1746-8094
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809418300260
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2018.01.019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269065348907008
score 13.13397