Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models
- Autores
- Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Paula, Mariano. Centro de Investigaciones En Física E Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; Argentina - Materia
-
BAYESIAN FILTERING
GAUSSIAN PROCESSES
GLYCEMIC VARIABILITY
PLASMA INSULIN ESTIMATION
STOCHASTIC MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91524
Ver los metadatos del registro completo
id |
CONICETDig_ed81b38826ff52cfa18a5825fff14cbf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91524 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process modelsAvila, Luis Omarde Paula, MarianoMartínez, Ernesto CarlosErrecalde, Marcelo LuisBAYESIAN FILTERINGGAUSSIAN PROCESSESGLYCEMIC VARIABILITYPLASMA INSULIN ESTIMATIONSTOCHASTIC MODELhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks.Fil: Avila, Luis Omar. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Paula, Mariano. Centro de Investigaciones En Física E Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; ArgentinaElsevier2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91524Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-721746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809418300260info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2018.01.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:59Zoai:ri.conicet.gov.ar:11336/91524instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:59.572CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
title |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
spellingShingle |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models Avila, Luis Omar BAYESIAN FILTERING GAUSSIAN PROCESSES GLYCEMIC VARIABILITY PLASMA INSULIN ESTIMATION STOCHASTIC MODEL |
title_short |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
title_full |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
title_fullStr |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
title_full_unstemmed |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
title_sort |
Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models |
dc.creator.none.fl_str_mv |
Avila, Luis Omar de Paula, Mariano Martínez, Ernesto Carlos Errecalde, Marcelo Luis |
author |
Avila, Luis Omar |
author_facet |
Avila, Luis Omar de Paula, Mariano Martínez, Ernesto Carlos Errecalde, Marcelo Luis |
author_role |
author |
author2 |
de Paula, Mariano Martínez, Ernesto Carlos Errecalde, Marcelo Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BAYESIAN FILTERING GAUSSIAN PROCESSES GLYCEMIC VARIABILITY PLASMA INSULIN ESTIMATION STOCHASTIC MODEL |
topic |
BAYESIAN FILTERING GAUSSIAN PROCESSES GLYCEMIC VARIABILITY PLASMA INSULIN ESTIMATION STOCHASTIC MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks. Fil: Avila, Luis Omar. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Paula, Mariano. Centro de Investigaciones En Física E Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis; Argentina |
description |
The ultimate goal of an artificial pancreas (AP) is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most autonomous closed-loop strategies continuously compute the optimal insulin bolus to be administrated on the basis of the estimated plasma concentrations for glucose and insulin. Unlike subcutaneous glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models so as to fully estimate plasma insulin concentrations. For model-based estimation, GP-Bayesian filters have been recently proposed to incorporate probabilistic non-parametric Gaussian process (GP) models of dynamic systems into Kalman filtering techniques. As a result, model uncertainty can explicitly be incorporated into the prediction step and in the filtering processes, which is usually not the case for more traditional filtering strategies that resort to parametric models for state estimation. More specifically, the question arises as to whether glycemic variability is properly taken into account in model formulations and whether it would compromise proper estimation of plasma insulin concentration. To tackle this, a stochastic glycemic model including variability was incorporated into different parametric and nonparametric filtering techniques to provide an estimate of the plasma insulin levels. In particular, we compared density representation against using knowledge about the parameterization of the transition dynamics and the observation function. We found that, as glycemic variability increases, filtering techniques based on parametric models rapidly degrades their performance as a consequence of large nonlinearities. Results show that Bayes’ filtering techniques increase predictability of the patient state, and thus, boost safety and performance in the AP control and monitoring tasks. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91524 Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-72 1746-8094 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91524 |
identifier_str_mv |
Avila, Luis Omar; de Paula, Mariano; Martínez, Ernesto Carlos; Errecalde, Marcelo Luis; Robust insulin estimation under glycemic variability using Bayesian filtering and Gaussian process models; Elsevier; Biomedical Signal Processing and Control; 42; 4-2018; 63-72 1746-8094 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1746809418300260 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2018.01.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269065348907008 |
score |
13.13397 |