Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques
- Autores
- Avila, Luis Omar; de Paula, Mariano; Sánchez Reinoso, Carlos Roberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ultimate goal of an artificial pancreas is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most closed-loop control strategies need to compute the optimal insulin action on the basis of precedent glucose and insulin levels. Unlike glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models to estimate plasma insulin concentrations. Between others, filtering techniques based on a generalization of the Kalman filter (KF) have been the most widely applied in the estimation of hidden states in nonlinear dynamic systems. Nevertheless, poor predictability of BG levels is a key issue since the glucose-insulin dynamics presents great inter- and intra-patient variability. Here, the question arises as to whether glycemic variability is not properly taken into account in models formulations and whether or it would compromise proper estimation of plasma insulin concentration. In order to tackle this point, a deterministic model describing glucose-insulin interaction plus a stochastic process to account for BG fluctuations were incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) configurations of the Kalman filter to provide an estimate of the plasma insulin concentration. We found that for low glycemic variability, insulin state estimation can be attained with acceptable accuracy; however, as glycemic variability rises, Kalman filters rapidly degrade their performance as a consequence of large nonlinearities.
Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Sánchez Reinoso, Carlos Roberto. Universidad Nacional de Catamarca. Facultad Tecnología y Ciencias Aplicadas. Centro de Investigación y Desarrollo en Modelado, Simulación y Optimización de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ARTIFICIAL PANCREAS
GLYCEMIC VARIABILITY
INSULIN ESTIMATION
KALMAN FILTER
STOCHASTIC MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87958
Ver los metadatos del registro completo
id |
CONICETDig_56e6a35a12e6d2e0e4e3ca7e5090959a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87958 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniquesAvila, Luis Omarde Paula, MarianoSánchez Reinoso, Carlos RobertoARTIFICIAL PANCREASGLYCEMIC VARIABILITYINSULIN ESTIMATIONKALMAN FILTERSTOCHASTIC MODELhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The ultimate goal of an artificial pancreas is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most closed-loop control strategies need to compute the optimal insulin action on the basis of precedent glucose and insulin levels. Unlike glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models to estimate plasma insulin concentrations. Between others, filtering techniques based on a generalization of the Kalman filter (KF) have been the most widely applied in the estimation of hidden states in nonlinear dynamic systems. Nevertheless, poor predictability of BG levels is a key issue since the glucose-insulin dynamics presents great inter- and intra-patient variability. Here, the question arises as to whether glycemic variability is not properly taken into account in models formulations and whether or it would compromise proper estimation of plasma insulin concentration. In order to tackle this point, a deterministic model describing glucose-insulin interaction plus a stochastic process to account for BG fluctuations were incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) configurations of the Kalman filter to provide an estimate of the plasma insulin concentration. We found that for low glycemic variability, insulin state estimation can be attained with acceptable accuracy; however, as glycemic variability rises, Kalman filters rapidly degrade their performance as a consequence of large nonlinearities.Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Sánchez Reinoso, Carlos Roberto. Universidad Nacional de Catamarca. Facultad Tecnología y Ciencias Aplicadas. Centro de Investigación y Desarrollo en Modelado, Simulación y Optimización de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87958Avila, Luis Omar; de Paula, Mariano; Sánchez Reinoso, Carlos Roberto; Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques; Elsevier; Biosystems; 171; 9-2018; 1-90303-2647CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303264717302368info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biosystems.2018.06.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:20Zoai:ri.conicet.gov.ar:11336/87958instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:20.319CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
title |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
spellingShingle |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques Avila, Luis Omar ARTIFICIAL PANCREAS GLYCEMIC VARIABILITY INSULIN ESTIMATION KALMAN FILTER STOCHASTIC MODEL |
title_short |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
title_full |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
title_fullStr |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
title_full_unstemmed |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
title_sort |
Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques |
dc.creator.none.fl_str_mv |
Avila, Luis Omar de Paula, Mariano Sánchez Reinoso, Carlos Roberto |
author |
Avila, Luis Omar |
author_facet |
Avila, Luis Omar de Paula, Mariano Sánchez Reinoso, Carlos Roberto |
author_role |
author |
author2 |
de Paula, Mariano Sánchez Reinoso, Carlos Roberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL PANCREAS GLYCEMIC VARIABILITY INSULIN ESTIMATION KALMAN FILTER STOCHASTIC MODEL |
topic |
ARTIFICIAL PANCREAS GLYCEMIC VARIABILITY INSULIN ESTIMATION KALMAN FILTER STOCHASTIC MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The ultimate goal of an artificial pancreas is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most closed-loop control strategies need to compute the optimal insulin action on the basis of precedent glucose and insulin levels. Unlike glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models to estimate plasma insulin concentrations. Between others, filtering techniques based on a generalization of the Kalman filter (KF) have been the most widely applied in the estimation of hidden states in nonlinear dynamic systems. Nevertheless, poor predictability of BG levels is a key issue since the glucose-insulin dynamics presents great inter- and intra-patient variability. Here, the question arises as to whether glycemic variability is not properly taken into account in models formulations and whether or it would compromise proper estimation of plasma insulin concentration. In order to tackle this point, a deterministic model describing glucose-insulin interaction plus a stochastic process to account for BG fluctuations were incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) configurations of the Kalman filter to provide an estimate of the plasma insulin concentration. We found that for low glycemic variability, insulin state estimation can be attained with acceptable accuracy; however, as glycemic variability rises, Kalman filters rapidly degrade their performance as a consequence of large nonlinearities. Fil: Avila, Luis Omar. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Sánchez Reinoso, Carlos Roberto. Universidad Nacional de Catamarca. Facultad Tecnología y Ciencias Aplicadas. Centro de Investigación y Desarrollo en Modelado, Simulación y Optimización de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The ultimate goal of an artificial pancreas is finding the optimal insulin rates that can effectively reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most closed-loop control strategies need to compute the optimal insulin action on the basis of precedent glucose and insulin levels. Unlike glucose levels which can be measured in real-time, unavailability of insulin sensors makes it essential the use of mathematical models to estimate plasma insulin concentrations. Between others, filtering techniques based on a generalization of the Kalman filter (KF) have been the most widely applied in the estimation of hidden states in nonlinear dynamic systems. Nevertheless, poor predictability of BG levels is a key issue since the glucose-insulin dynamics presents great inter- and intra-patient variability. Here, the question arises as to whether glycemic variability is not properly taken into account in models formulations and whether or it would compromise proper estimation of plasma insulin concentration. In order to tackle this point, a deterministic model describing glucose-insulin interaction plus a stochastic process to account for BG fluctuations were incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) configurations of the Kalman filter to provide an estimate of the plasma insulin concentration. We found that for low glycemic variability, insulin state estimation can be attained with acceptable accuracy; however, as glycemic variability rises, Kalman filters rapidly degrade their performance as a consequence of large nonlinearities. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87958 Avila, Luis Omar; de Paula, Mariano; Sánchez Reinoso, Carlos Roberto; Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques; Elsevier; Biosystems; 171; 9-2018; 1-9 0303-2647 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87958 |
identifier_str_mv |
Avila, Luis Omar; de Paula, Mariano; Sánchez Reinoso, Carlos Roberto; Estimation of plasma insulin concentration under glycemic variability using nonlinear filtering techniques; Elsevier; Biosystems; 171; 9-2018; 1-9 0303-2647 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0303264717302368 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biosystems.2018.06.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268787670253568 |
score |
13.13397 |