Hybrid method for power system state estimation
- Autores
- Risso, Mariano Angel; Rubiales, Aldo Jose; Lotito, Pablo Andres
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- State estimation in power systems is classically based on the weighted least squares method. Recently, different extensions of Kalman filters have been proposed. Among them, the 'unscented' Kalman filter (UKF) improves the results of weighted least squares methods, when there are small changes in the system, as it considers the history of the state. The novel algorithm presented in this work combines the best of both approaches. To perform this task a new index is defined to allow the algorithm to choose in real time, and for each iteration, between a static or a dynamic estimator. This combination allows overcoming the anomalies observed when the UKF faces abrupt variations of the system state and also the lack of observability that weighted least squares could present. The proposed methodology was tested with three test cases outperforming the previously mentioned algorithms.
Fil: Risso, Mariano Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
STATE
ESTIMATION
KALMAN
FILTERING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180221
Ver los metadatos del registro completo
id |
CONICETDig_fb8a676d14e5b694f1c0d38dafed880c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180221 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hybrid method for power system state estimationRisso, Mariano AngelRubiales, Aldo JoseLotito, Pablo AndresSTATEESTIMATIONKALMANFILTERINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2State estimation in power systems is classically based on the weighted least squares method. Recently, different extensions of Kalman filters have been proposed. Among them, the 'unscented' Kalman filter (UKF) improves the results of weighted least squares methods, when there are small changes in the system, as it considers the history of the state. The novel algorithm presented in this work combines the best of both approaches. To perform this task a new index is defined to allow the algorithm to choose in real time, and for each iteration, between a static or a dynamic estimator. This combination allows overcoming the anomalies observed when the UKF faces abrupt variations of the system state and also the lack of observability that weighted least squares could present. The proposed methodology was tested with three test cases outperforming the previously mentioned algorithms.Fil: Risso, Mariano Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitution of Engineering and Technology2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180221Risso, Mariano Angel; Rubiales, Aldo Jose; Lotito, Pablo Andres; Hybrid method for power system state estimation; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 9; 7; 4-2015; 636-6431751-8687CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2014.0836info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-gtd.2014.0836info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:49Zoai:ri.conicet.gov.ar:11336/180221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:49.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hybrid method for power system state estimation |
title |
Hybrid method for power system state estimation |
spellingShingle |
Hybrid method for power system state estimation Risso, Mariano Angel STATE ESTIMATION KALMAN FILTERING |
title_short |
Hybrid method for power system state estimation |
title_full |
Hybrid method for power system state estimation |
title_fullStr |
Hybrid method for power system state estimation |
title_full_unstemmed |
Hybrid method for power system state estimation |
title_sort |
Hybrid method for power system state estimation |
dc.creator.none.fl_str_mv |
Risso, Mariano Angel Rubiales, Aldo Jose Lotito, Pablo Andres |
author |
Risso, Mariano Angel |
author_facet |
Risso, Mariano Angel Rubiales, Aldo Jose Lotito, Pablo Andres |
author_role |
author |
author2 |
Rubiales, Aldo Jose Lotito, Pablo Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
STATE ESTIMATION KALMAN FILTERING |
topic |
STATE ESTIMATION KALMAN FILTERING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
State estimation in power systems is classically based on the weighted least squares method. Recently, different extensions of Kalman filters have been proposed. Among them, the 'unscented' Kalman filter (UKF) improves the results of weighted least squares methods, when there are small changes in the system, as it considers the history of the state. The novel algorithm presented in this work combines the best of both approaches. To perform this task a new index is defined to allow the algorithm to choose in real time, and for each iteration, between a static or a dynamic estimator. This combination allows overcoming the anomalies observed when the UKF faces abrupt variations of the system state and also the lack of observability that weighted least squares could present. The proposed methodology was tested with three test cases outperforming the previously mentioned algorithms. Fil: Risso, Mariano Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Rubiales, Aldo Jose. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
State estimation in power systems is classically based on the weighted least squares method. Recently, different extensions of Kalman filters have been proposed. Among them, the 'unscented' Kalman filter (UKF) improves the results of weighted least squares methods, when there are small changes in the system, as it considers the history of the state. The novel algorithm presented in this work combines the best of both approaches. To perform this task a new index is defined to allow the algorithm to choose in real time, and for each iteration, between a static or a dynamic estimator. This combination allows overcoming the anomalies observed when the UKF faces abrupt variations of the system state and also the lack of observability that weighted least squares could present. The proposed methodology was tested with three test cases outperforming the previously mentioned algorithms. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180221 Risso, Mariano Angel; Rubiales, Aldo Jose; Lotito, Pablo Andres; Hybrid method for power system state estimation; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 9; 7; 4-2015; 636-643 1751-8687 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/180221 |
identifier_str_mv |
Risso, Mariano Angel; Rubiales, Aldo Jose; Lotito, Pablo Andres; Hybrid method for power system state estimation; Institution of Engineering and Technology; Iet Generation Transmission & Distribution; 9; 7; 4-2015; 636-643 1751-8687 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2014.0836 info:eu-repo/semantics/altIdentifier/doi/10.1049/iet-gtd.2014.0836 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institution of Engineering and Technology |
publisher.none.fl_str_mv |
Institution of Engineering and Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269055230148608 |
score |
13.13397 |