Bayesian Estimation of Turbulent Motion
- Autores
- Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.
Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Herzet, Cédric. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Heitz, Dominique. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. National Center for Atmospheric Research; Estados Unidos de América; - Materia
-
BAYESIAN MODEL SELECTION
CONSTRAINED OPTIMIZATION
OPTIC FLOW
ROBUST ESTIMATION
TURBULENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2297
Ver los metadatos del registro completo
id |
CONICETDig_189a1826a1f394591ab6a01b126415e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2297 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bayesian Estimation of Turbulent MotionHéas, PatrickHerzet, CédricMémin, EtienneHeitz, DominiqueMininni, Pablo DanielBAYESIAN MODEL SELECTIONCONSTRAINED OPTIMIZATIONOPTIC FLOWROBUST ESTIMATIONTURBULENCEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Herzet, Cédric. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Heitz, Dominique. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. National Center for Atmospheric Research; Estados Unidos de América;IEEE Computer Society2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2297Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Bayesian Estimation of Turbulent Motion; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 6; 4-2013; 1343-13560162-8828enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6341748%26userType%3Dinst&denyReason=-134&arnumber=6341748&productsMatched=null&userType=instinfo:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2012.232info:eu-repo/semantics/altIdentifier/url/http://www.computer.org/csdl/trans/tp/2013/06/ttp2013061343-abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:12Zoai:ri.conicet.gov.ar:11336/2297instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:12.744CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bayesian Estimation of Turbulent Motion |
title |
Bayesian Estimation of Turbulent Motion |
spellingShingle |
Bayesian Estimation of Turbulent Motion Héas, Patrick BAYESIAN MODEL SELECTION CONSTRAINED OPTIMIZATION OPTIC FLOW ROBUST ESTIMATION TURBULENCE |
title_short |
Bayesian Estimation of Turbulent Motion |
title_full |
Bayesian Estimation of Turbulent Motion |
title_fullStr |
Bayesian Estimation of Turbulent Motion |
title_full_unstemmed |
Bayesian Estimation of Turbulent Motion |
title_sort |
Bayesian Estimation of Turbulent Motion |
dc.creator.none.fl_str_mv |
Héas, Patrick Herzet, Cédric Mémin, Etienne Heitz, Dominique Mininni, Pablo Daniel |
author |
Héas, Patrick |
author_facet |
Héas, Patrick Herzet, Cédric Mémin, Etienne Heitz, Dominique Mininni, Pablo Daniel |
author_role |
author |
author2 |
Herzet, Cédric Mémin, Etienne Heitz, Dominique Mininni, Pablo Daniel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BAYESIAN MODEL SELECTION CONSTRAINED OPTIMIZATION OPTIC FLOW ROBUST ESTIMATION TURBULENCE |
topic |
BAYESIAN MODEL SELECTION CONSTRAINED OPTIMIZATION OPTIC FLOW ROBUST ESTIMATION TURBULENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation. Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Herzet, Cédric. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Heitz, Dominique. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. National Center for Atmospheric Research; Estados Unidos de América; |
description |
Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2297 Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Bayesian Estimation of Turbulent Motion; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 6; 4-2013; 1343-1356 0162-8828 |
url |
http://hdl.handle.net/11336/2297 |
identifier_str_mv |
Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Bayesian Estimation of Turbulent Motion; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 6; 4-2013; 1343-1356 0162-8828 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6341748%26userType%3Dinst&denyReason=-134&arnumber=6341748&productsMatched=null&userType=inst info:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2012.232 info:eu-repo/semantics/altIdentifier/url/http://www.computer.org/csdl/trans/tp/2013/06/ttp2013061343-abs.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE Computer Society |
publisher.none.fl_str_mv |
IEEE Computer Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269625101844480 |
score |
13.13397 |