Bayesian Estimation of Turbulent Motion

Autores
Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.
Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Herzet, Cédric. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Heitz, Dominique. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. National Center for Atmospheric Research; Estados Unidos de América;
Materia
BAYESIAN MODEL SELECTION
CONSTRAINED OPTIMIZATION
OPTIC FLOW
ROBUST ESTIMATION
TURBULENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2297

id CONICETDig_189a1826a1f394591ab6a01b126415e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/2297
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bayesian Estimation of Turbulent MotionHéas, PatrickHerzet, CédricMémin, EtienneHeitz, DominiqueMininni, Pablo DanielBAYESIAN MODEL SELECTIONCONSTRAINED OPTIMIZATIONOPTIC FLOWROBUST ESTIMATIONTURBULENCEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Herzet, Cédric. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Heitz, Dominique. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. National Center for Atmospheric Research; Estados Unidos de América;IEEE Computer Society2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2297Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Bayesian Estimation of Turbulent Motion; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 6; 4-2013; 1343-13560162-8828enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6341748%26userType%3Dinst&denyReason=-134&arnumber=6341748&productsMatched=null&userType=instinfo:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2012.232info:eu-repo/semantics/altIdentifier/url/http://www.computer.org/csdl/trans/tp/2013/06/ttp2013061343-abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:12Zoai:ri.conicet.gov.ar:11336/2297instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:12.744CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bayesian Estimation of Turbulent Motion
title Bayesian Estimation of Turbulent Motion
spellingShingle Bayesian Estimation of Turbulent Motion
Héas, Patrick
BAYESIAN MODEL SELECTION
CONSTRAINED OPTIMIZATION
OPTIC FLOW
ROBUST ESTIMATION
TURBULENCE
title_short Bayesian Estimation of Turbulent Motion
title_full Bayesian Estimation of Turbulent Motion
title_fullStr Bayesian Estimation of Turbulent Motion
title_full_unstemmed Bayesian Estimation of Turbulent Motion
title_sort Bayesian Estimation of Turbulent Motion
dc.creator.none.fl_str_mv Héas, Patrick
Herzet, Cédric
Mémin, Etienne
Heitz, Dominique
Mininni, Pablo Daniel
author Héas, Patrick
author_facet Héas, Patrick
Herzet, Cédric
Mémin, Etienne
Heitz, Dominique
Mininni, Pablo Daniel
author_role author
author2 Herzet, Cédric
Mémin, Etienne
Heitz, Dominique
Mininni, Pablo Daniel
author2_role author
author
author
author
dc.subject.none.fl_str_mv BAYESIAN MODEL SELECTION
CONSTRAINED OPTIMIZATION
OPTIC FLOW
ROBUST ESTIMATION
TURBULENCE
topic BAYESIAN MODEL SELECTION
CONSTRAINED OPTIMIZATION
OPTIC FLOW
ROBUST ESTIMATION
TURBULENCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.
Fil: Héas, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Herzet, Cédric. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mémin, Etienne. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Heitz, Dominique. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. National Center for Atmospheric Research; Estados Unidos de América;
description Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non-Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2297
Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Bayesian Estimation of Turbulent Motion; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 6; 4-2013; 1343-1356
0162-8828
url http://hdl.handle.net/11336/2297
identifier_str_mv Héas, Patrick; Herzet, Cédric; Mémin, Etienne; Heitz, Dominique; Mininni, Pablo Daniel; Bayesian Estimation of Turbulent Motion; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 6; 4-2013; 1343-1356
0162-8828
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6341748%26userType%3Dinst&denyReason=-134&arnumber=6341748&productsMatched=null&userType=inst
info:eu-repo/semantics/altIdentifier/doi/10.1109/TPAMI.2012.232
info:eu-repo/semantics/altIdentifier/url/http://www.computer.org/csdl/trans/tp/2013/06/ttp2013061343-abs.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269625101844480
score 13.13397