Robust deconvolution for ARMAX models with Gaussian uncertainties
- Autores
- Milocco, Ruben Horacio; De Doná, J. A.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
Fil: De Doná, J. A.. Universidad de Newcastle; Australia - Materia
-
Robust Filtering
Truncated gaussian
MAP
ARMAX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/247658
Ver los metadatos del registro completo
id |
CONICETDig_74d93f5b8c8958746a87500f925cb255 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/247658 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust deconvolution for ARMAX models with Gaussian uncertaintiesMilocco, Ruben HoracioDe Doná, J. A.Robust FilteringTruncated gaussianMAPARMAXhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaFil: De Doná, J. A.. Universidad de Newcastle; AustraliaElsevier Science2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247658Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-31210165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168410002161info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2010.05.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:09Zoai:ri.conicet.gov.ar:11336/247658instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:09.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
title |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
spellingShingle |
Robust deconvolution for ARMAX models with Gaussian uncertainties Milocco, Ruben Horacio Robust Filtering Truncated gaussian MAP ARMAX |
title_short |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
title_full |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
title_fullStr |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
title_full_unstemmed |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
title_sort |
Robust deconvolution for ARMAX models with Gaussian uncertainties |
dc.creator.none.fl_str_mv |
Milocco, Ruben Horacio De Doná, J. A. |
author |
Milocco, Ruben Horacio |
author_facet |
Milocco, Ruben Horacio De Doná, J. A. |
author_role |
author |
author2 |
De Doná, J. A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Robust Filtering Truncated gaussian MAP ARMAX |
topic |
Robust Filtering Truncated gaussian MAP ARMAX |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design. Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina Fil: De Doná, J. A.. Universidad de Newcastle; Australia |
description |
In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/247658 Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-3121 0165-1684 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/247658 |
identifier_str_mv |
Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-3121 0165-1684 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168410002161 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2010.05.014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083431245545472 |
score |
13.22299 |