Robust deconvolution for ARMAX models with Gaussian uncertainties

Autores
Milocco, Ruben Horacio; De Doná, J. A.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
Fil: De Doná, J. A.. Universidad de Newcastle; Australia
Materia
Robust Filtering
Truncated gaussian
MAP
ARMAX
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/247658

id CONICETDig_74d93f5b8c8958746a87500f925cb255
oai_identifier_str oai:ri.conicet.gov.ar:11336/247658
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust deconvolution for ARMAX models with Gaussian uncertaintiesMilocco, Ruben HoracioDe Doná, J. A.Robust FilteringTruncated gaussianMAPARMAXhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; ArgentinaFil: De Doná, J. A.. Universidad de Newcastle; AustraliaElsevier Science2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247658Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-31210165-1684CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168410002161info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2010.05.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:09Zoai:ri.conicet.gov.ar:11336/247658instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:09.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust deconvolution for ARMAX models with Gaussian uncertainties
title Robust deconvolution for ARMAX models with Gaussian uncertainties
spellingShingle Robust deconvolution for ARMAX models with Gaussian uncertainties
Milocco, Ruben Horacio
Robust Filtering
Truncated gaussian
MAP
ARMAX
title_short Robust deconvolution for ARMAX models with Gaussian uncertainties
title_full Robust deconvolution for ARMAX models with Gaussian uncertainties
title_fullStr Robust deconvolution for ARMAX models with Gaussian uncertainties
title_full_unstemmed Robust deconvolution for ARMAX models with Gaussian uncertainties
title_sort Robust deconvolution for ARMAX models with Gaussian uncertainties
dc.creator.none.fl_str_mv Milocco, Ruben Horacio
De Doná, J. A.
author Milocco, Ruben Horacio
author_facet Milocco, Ruben Horacio
De Doná, J. A.
author_role author
author2 De Doná, J. A.
author2_role author
dc.subject.none.fl_str_mv Robust Filtering
Truncated gaussian
MAP
ARMAX
topic Robust Filtering
Truncated gaussian
MAP
ARMAX
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.
Fil: Milocco, Ruben Horacio. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Electrotécnica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina
Fil: De Doná, J. A.. Universidad de Newcastle; Australia
description In this paper we propose a robust deconvolution filter design that optimises a functional motivated by the \emph{a posteriori} probability of the signals to be estimated. The problem is formulated in the framework of uncertain linear systems represented by discrete-time input-output ARMAX models, where the uncertainty is modeled as the realisation of a stochastic process with known statistics. The design is based on the use of a horizon of measurements in such a way that, for FIR systems, the functional to be optimised coincides with the one that maximises the \emph{a posteriori} probability (MAP); and for ARMAX systems, the functional converges to the MAP functional as the length of the horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian probability density functions based on measurements correlated with them. The robust design shows a very significant improvement, in a probabilistic sense for different systems, of the relative standard deviation of the estimation error when compared with the nominal model filter design.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/247658
Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-3121
0165-1684
CONICET Digital
CONICET
url http://hdl.handle.net/11336/247658
identifier_str_mv Milocco, Ruben Horacio; De Doná, J. A.; Robust deconvolution for ARMAX models with Gaussian uncertainties; Elsevier Science; Signal Processing; 90; 12; 12-2010; 3110-3121
0165-1684
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165168410002161
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.sigpro.2010.05.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083431245545472
score 13.22299