Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
- Autores
- Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding.
Fil: Guillen, Daniel. Universidad Autónoma de Nuevo León; Mayotte
Fil: Idarraga Ospina, Gina. Universidad Autónoma de Nuevo León; Mayotte
Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Cabral, Sergio. Universidade Regional de Blumenau; Brasil - Materia
-
Discrete Wavelet Transform (Dwt)
Kullback-Leibler (Kl) Divergence
Partial Discharges
Pd Location
Transformer Windings - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61135
Ver los metadatos del registro completo
id |
CONICETDig_304d6979f165cbdf04fe1ebccc7cff08 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61135 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergenceGuillen, DanielIdarraga Ospina, GinaMombello, Enrique EstebanCabral, SergioDiscrete Wavelet Transform (Dwt)Kullback-Leibler (Kl) DivergencePartial DischargesPd LocationTransformer Windingshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding.Fil: Guillen, Daniel. Universidad Autónoma de Nuevo León; MayotteFil: Idarraga Ospina, Gina. Universidad Autónoma de Nuevo León; MayotteFil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Cabral, Sergio. Universidade Regional de Blumenau; BrasilElsevier Science Sa2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61135Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio; Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence; Elsevier Science Sa; Electric Power Systems Research; 136; 7-2016; 398-4050378-7796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsr.2016.03.020info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378779616300670info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:50Zoai:ri.conicet.gov.ar:11336/61135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:50.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
title |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
spellingShingle |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence Guillen, Daniel Discrete Wavelet Transform (Dwt) Kullback-Leibler (Kl) Divergence Partial Discharges Pd Location Transformer Windings |
title_short |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
title_full |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
title_fullStr |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
title_full_unstemmed |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
title_sort |
Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence |
dc.creator.none.fl_str_mv |
Guillen, Daniel Idarraga Ospina, Gina Mombello, Enrique Esteban Cabral, Sergio |
author |
Guillen, Daniel |
author_facet |
Guillen, Daniel Idarraga Ospina, Gina Mombello, Enrique Esteban Cabral, Sergio |
author_role |
author |
author2 |
Idarraga Ospina, Gina Mombello, Enrique Esteban Cabral, Sergio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Discrete Wavelet Transform (Dwt) Kullback-Leibler (Kl) Divergence Partial Discharges Pd Location Transformer Windings |
topic |
Discrete Wavelet Transform (Dwt) Kullback-Leibler (Kl) Divergence Partial Discharges Pd Location Transformer Windings |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding. Fil: Guillen, Daniel. Universidad Autónoma de Nuevo León; Mayotte Fil: Idarraga Ospina, Gina. Universidad Autónoma de Nuevo León; Mayotte Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Cabral, Sergio. Universidade Regional de Blumenau; Brasil |
description |
A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61135 Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio; Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence; Elsevier Science Sa; Electric Power Systems Research; 136; 7-2016; 398-405 0378-7796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61135 |
identifier_str_mv |
Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio; Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence; Elsevier Science Sa; Electric Power Systems Research; 136; 7-2016; 398-405 0378-7796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsr.2016.03.020 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378779616300670 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614306240397312 |
score |
13.070432 |