Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence

Autores
Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding.
Fil: Guillen, Daniel. Universidad Autónoma de Nuevo León; Mayotte
Fil: Idarraga Ospina, Gina. Universidad Autónoma de Nuevo León; Mayotte
Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Cabral, Sergio. Universidade Regional de Blumenau; Brasil
Materia
Discrete Wavelet Transform (Dwt)
Kullback-Leibler (Kl) Divergence
Partial Discharges
Pd Location
Transformer Windings
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61135

id CONICETDig_304d6979f165cbdf04fe1ebccc7cff08
oai_identifier_str oai:ri.conicet.gov.ar:11336/61135
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergenceGuillen, DanielIdarraga Ospina, GinaMombello, Enrique EstebanCabral, SergioDiscrete Wavelet Transform (Dwt)Kullback-Leibler (Kl) DivergencePartial DischargesPd LocationTransformer Windingshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding.Fil: Guillen, Daniel. Universidad Autónoma de Nuevo León; MayotteFil: Idarraga Ospina, Gina. Universidad Autónoma de Nuevo León; MayotteFil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Cabral, Sergio. Universidade Regional de Blumenau; BrasilElsevier Science Sa2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61135Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio; Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence; Elsevier Science Sa; Electric Power Systems Research; 136; 7-2016; 398-4050378-7796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsr.2016.03.020info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378779616300670info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:50Zoai:ri.conicet.gov.ar:11336/61135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:50.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
title Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
spellingShingle Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
Guillen, Daniel
Discrete Wavelet Transform (Dwt)
Kullback-Leibler (Kl) Divergence
Partial Discharges
Pd Location
Transformer Windings
title_short Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
title_full Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
title_fullStr Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
title_full_unstemmed Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
title_sort Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence
dc.creator.none.fl_str_mv Guillen, Daniel
Idarraga Ospina, Gina
Mombello, Enrique Esteban
Cabral, Sergio
author Guillen, Daniel
author_facet Guillen, Daniel
Idarraga Ospina, Gina
Mombello, Enrique Esteban
Cabral, Sergio
author_role author
author2 Idarraga Ospina, Gina
Mombello, Enrique Esteban
Cabral, Sergio
author2_role author
author
author
dc.subject.none.fl_str_mv Discrete Wavelet Transform (Dwt)
Kullback-Leibler (Kl) Divergence
Partial Discharges
Pd Location
Transformer Windings
topic Discrete Wavelet Transform (Dwt)
Kullback-Leibler (Kl) Divergence
Partial Discharges
Pd Location
Transformer Windings
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding.
Fil: Guillen, Daniel. Universidad Autónoma de Nuevo León; Mayotte
Fil: Idarraga Ospina, Gina. Universidad Autónoma de Nuevo León; Mayotte
Fil: Mombello, Enrique Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Cabral, Sergio. Universidade Regional de Blumenau; Brasil
description A new algorithm to partial discharges (PD) location in transformer windings by means of the discrete wavelets transform (DWT) and the Kullback-Leibler (KL) divergence is presented. When the insulation system of transformers has considerable damage, high levels of PD appear. A PD analysis will help to prevent and to avoid catastrophic faults in the transformer insulation system, and is also useful to quantify the damage level into it. However, it is a complex task, because PD signals have a small magnitude and are presented during some microseconds. In this paper, a lumped parameter model RLC is used to model the transformer winding and to obtain PD reference signals. The DWT is used to process those signals. PD location is finally estimated by means of the minimum entropy concept that minimizes the Kullback-Leibler (KL) divergence between PD signals (test and reference signals). Different time durations and amplitudes to the PD signals were considered. The results of computer simulation confirm the accuracy of the proposed algorithm, with an error less than 5%. Also, the algorithm is validated in a distribution transformer winding.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61135
Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio; Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence; Elsevier Science Sa; Electric Power Systems Research; 136; 7-2016; 398-405
0378-7796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61135
identifier_str_mv Guillen, Daniel; Idarraga Ospina, Gina; Mombello, Enrique Esteban; Cabral, Sergio; Partial discharges location in transformer winding using wavelets and Kullback-Leibler divergence; Elsevier Science Sa; Electric Power Systems Research; 136; 7-2016; 398-405
0378-7796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsr.2016.03.020
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378779616300670
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614306240397312
score 13.070432