A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence
- Autores
- Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure.
Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Pereyra, M.. University Of Bristol; Reino Unido
Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Batatia, H.. Universite de Toulouse; Francia
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina - Materia
-
Epilepsy
Generalized Gaussian Distribution
Kullback-Leibler Divergence
Multivariate Wavelet Decomposition
Seizure/Non-Seizure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77054
Ver los metadatos del registro completo
id |
CONICETDig_01f173af82b922d3a2291a853d098384 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77054 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergenceQuintero Rincón, AntonioPereyra, M.D'Giano, CarlosBatatia, H.Risk, MarceloEpilepsyGeneralized Gaussian DistributionKullback-Leibler DivergenceMultivariate Wavelet DecompositionSeizure/Non-Seizurehttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure.Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pereyra, M.. University Of Bristol; Reino UnidoFil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Batatia, H.. Universite de Toulouse; FranciaFil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaSpringer Verlag2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77054Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo; A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence; Springer Verlag; Ifmbe Proceedings; 60; 4-2017; 13-161680-0737CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-981-10-4086-3_4info:eu-repo/semantics/altIdentifier/doi/10.1007/978-981-10-4086-3_4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:05Zoai:ri.conicet.gov.ar:11336/77054instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:05.997CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
spellingShingle |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence Quintero Rincón, Antonio Epilepsy Generalized Gaussian Distribution Kullback-Leibler Divergence Multivariate Wavelet Decomposition Seizure/Non-Seizure |
title_short |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_full |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_fullStr |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_full_unstemmed |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
title_sort |
A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence |
dc.creator.none.fl_str_mv |
Quintero Rincón, Antonio Pereyra, M. D'Giano, Carlos Batatia, H. Risk, Marcelo |
author |
Quintero Rincón, Antonio |
author_facet |
Quintero Rincón, Antonio Pereyra, M. D'Giano, Carlos Batatia, H. Risk, Marcelo |
author_role |
author |
author2 |
Pereyra, M. D'Giano, Carlos Batatia, H. Risk, Marcelo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Epilepsy Generalized Gaussian Distribution Kullback-Leibler Divergence Multivariate Wavelet Decomposition Seizure/Non-Seizure |
topic |
Epilepsy Generalized Gaussian Distribution Kullback-Leibler Divergence Multivariate Wavelet Decomposition Seizure/Non-Seizure |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure. Fil: Quintero Rincón, Antonio. Instituto Tecnológico de Buenos Aires; Argentina Fil: Pereyra, M.. University Of Bristol; Reino Unido Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina Fil: Batatia, H.. Universite de Toulouse; Francia Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina |
description |
This paper presents a statistical signal processing method for the characterization of EEG of patients suffering from epilepsy. A statistical model is proposed for the signals and the Kullback-Leibler divergence is used to study the differences between Seizure/Non-Seizure in patients suffering from epilepsy. Precisely, EEG signals are transformed into multivariate coefficients through multilevel 1D wavelet decomposition of different brain frequencies. The generalized Gaussian distribution (GGD) is shown to model precisely these coefficients. Patients are compared based on the analytical development of Kullback-Leibler divergence (KLD) of their corresponding GGD distributions. The method has been applied to a dataset of 18 epileptic signals of 9 patients. Results show a clear discrepancy between Seizure/Non-Seizure in epileptic signals, which helps in determining the onset of the seizure. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77054 Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo; A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence; Springer Verlag; Ifmbe Proceedings; 60; 4-2017; 13-16 1680-0737 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77054 |
identifier_str_mv |
Quintero Rincón, Antonio; Pereyra, M.; D'Giano, Carlos; Batatia, H.; Risk, Marcelo; A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence; Springer Verlag; Ifmbe Proceedings; 60; 4-2017; 13-16 1680-0737 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-981-10-4086-3_4 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-981-10-4086-3_4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980128146063360 |
score |
12.993085 |