Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification
- Autores
- Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining.
Fil: Rojas, Matias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina
Fil: Olivera, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina
Fil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina - Materia
-
CELLULAR GENETIC ALGORITHM
MEDICAL DATA CLASSIFICATION
METAHEURISTICS
MULTILAYER PERCEPTRON
TRAINING METHODS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/187877
Ver los metadatos del registro completo
id |
CONICETDig_eb804f31d83852647de5eea977ca96bc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/187877 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classificationRojas, Matias GabrielOlivera, Ana CarolinaVidal, Pablo JavierCELLULAR GENETIC ALGORITHMMEDICAL DATA CLASSIFICATIONMETAHEURISTICSMULTILAYER PERCEPTRONTRAINING METHODShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining.Fil: Rojas, Matias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; ArgentinaFil: Olivera, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaElsevier2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/187877Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier; Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification; Elsevier; Array; 14; 7-2022; 1-152590-0056CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2590005622000339info:eu-repo/semantics/altIdentifier/doi/10.1016/j.array.2022.100173info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:40Zoai:ri.conicet.gov.ar:11336/187877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:40.875CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
title |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
spellingShingle |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification Rojas, Matias Gabriel CELLULAR GENETIC ALGORITHM MEDICAL DATA CLASSIFICATION METAHEURISTICS MULTILAYER PERCEPTRON TRAINING METHODS |
title_short |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
title_full |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
title_fullStr |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
title_full_unstemmed |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
title_sort |
Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification |
dc.creator.none.fl_str_mv |
Rojas, Matias Gabriel Olivera, Ana Carolina Vidal, Pablo Javier |
author |
Rojas, Matias Gabriel |
author_facet |
Rojas, Matias Gabriel Olivera, Ana Carolina Vidal, Pablo Javier |
author_role |
author |
author2 |
Olivera, Ana Carolina Vidal, Pablo Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CELLULAR GENETIC ALGORITHM MEDICAL DATA CLASSIFICATION METAHEURISTICS MULTILAYER PERCEPTRON TRAINING METHODS |
topic |
CELLULAR GENETIC ALGORITHM MEDICAL DATA CLASSIFICATION METAHEURISTICS MULTILAYER PERCEPTRON TRAINING METHODS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining. Fil: Rojas, Matias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina Fil: Olivera, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina Fil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina |
description |
In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/187877 Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier; Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification; Elsevier; Array; 14; 7-2022; 1-15 2590-0056 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/187877 |
identifier_str_mv |
Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier; Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification; Elsevier; Array; 14; 7-2022; 1-15 2590-0056 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2590005622000339 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.array.2022.100173 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269969017995264 |
score |
13.13397 |