A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection
- Autores
- Rojas, Matias Gabriel; Olivera, Ana Carolina; Carballido, Jessica Andrea; Vidal, Pablo Javier
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gene selection aims at identifying a -small- subset of informative genes from the initial data to obtain high predictive accuracy for classification in human cancers. Gene selection can be considered as a combinatorial search problem and thus can be conveniently handled with optimization methods. hl{This paper proposes a Memetic Cellular Genetic Algorithm (MCGA) to solve the Feature Selection problem of cancer microarray datasets.} Benchmark gene expression datasets, i.e., colon, lymphoma, and leukaemia available in the literature were used for experimentation. MCGA is compared with other well-known metaheuristic´ strategies. The results demonstrate that our proposal can provide efficient solutions to find a minimal subset of the genes.
Fil: Rojas, Matias Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina - Materia
-
FEATURE SELECTION
MICROARRAY CLASSIFICATION
CELLULAR GENETIC ALGORITHM
MEMETIC ALGORITHM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137065
Ver los metadatos del registro completo
id |
CONICETDig_e743f64df1cefe1e5d6843800f9acd91 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137065 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature SelectionRojas, Matias GabrielOlivera, Ana CarolinaCarballido, Jessica AndreaVidal, Pablo JavierFEATURE SELECTIONMICROARRAY CLASSIFICATIONCELLULAR GENETIC ALGORITHMMEMETIC ALGORITHMhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Gene selection aims at identifying a -small- subset of informative genes from the initial data to obtain high predictive accuracy for classification in human cancers. Gene selection can be considered as a combinatorial search problem and thus can be conveniently handled with optimization methods. hl{This paper proposes a Memetic Cellular Genetic Algorithm (MCGA) to solve the Feature Selection problem of cancer microarray datasets.} Benchmark gene expression datasets, i.e., colon, lymphoma, and leukaemia available in the literature were used for experimentation. MCGA is compared with other well-known metaheuristic´ strategies. The results demonstrate that our proposal can provide efficient solutions to find a minimal subset of the genes.Fil: Rojas, Matias Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; ArgentinaInstitute of Electrical and Electronics Engineers2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137065Rojas, Matias Gabriel; Olivera, Ana Carolina; Carballido, Jessica Andrea; Vidal, Pablo Javier; A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 11; 10-2020; 1874-18831548-0992CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/3794info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:11Zoai:ri.conicet.gov.ar:11336/137065instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:11.804CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
title |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
spellingShingle |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection Rojas, Matias Gabriel FEATURE SELECTION MICROARRAY CLASSIFICATION CELLULAR GENETIC ALGORITHM MEMETIC ALGORITHM |
title_short |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
title_full |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
title_fullStr |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
title_full_unstemmed |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
title_sort |
A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection |
dc.creator.none.fl_str_mv |
Rojas, Matias Gabriel Olivera, Ana Carolina Carballido, Jessica Andrea Vidal, Pablo Javier |
author |
Rojas, Matias Gabriel |
author_facet |
Rojas, Matias Gabriel Olivera, Ana Carolina Carballido, Jessica Andrea Vidal, Pablo Javier |
author_role |
author |
author2 |
Olivera, Ana Carolina Carballido, Jessica Andrea Vidal, Pablo Javier |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FEATURE SELECTION MICROARRAY CLASSIFICATION CELLULAR GENETIC ALGORITHM MEMETIC ALGORITHM |
topic |
FEATURE SELECTION MICROARRAY CLASSIFICATION CELLULAR GENETIC ALGORITHM MEMETIC ALGORITHM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Gene selection aims at identifying a -small- subset of informative genes from the initial data to obtain high predictive accuracy for classification in human cancers. Gene selection can be considered as a combinatorial search problem and thus can be conveniently handled with optimization methods. hl{This paper proposes a Memetic Cellular Genetic Algorithm (MCGA) to solve the Feature Selection problem of cancer microarray datasets.} Benchmark gene expression datasets, i.e., colon, lymphoma, and leukaemia available in the literature were used for experimentation. MCGA is compared with other well-known metaheuristic´ strategies. The results demonstrate that our proposal can provide efficient solutions to find a minimal subset of the genes. Fil: Rojas, Matias Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Olivera, Ana Carolina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina |
description |
Gene selection aims at identifying a -small- subset of informative genes from the initial data to obtain high predictive accuracy for classification in human cancers. Gene selection can be considered as a combinatorial search problem and thus can be conveniently handled with optimization methods. hl{This paper proposes a Memetic Cellular Genetic Algorithm (MCGA) to solve the Feature Selection problem of cancer microarray datasets.} Benchmark gene expression datasets, i.e., colon, lymphoma, and leukaemia available in the literature were used for experimentation. MCGA is compared with other well-known metaheuristic´ strategies. The results demonstrate that our proposal can provide efficient solutions to find a minimal subset of the genes. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137065 Rojas, Matias Gabriel; Olivera, Ana Carolina; Carballido, Jessica Andrea; Vidal, Pablo Javier; A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 11; 10-2020; 1874-1883 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137065 |
identifier_str_mv |
Rojas, Matias Gabriel; Olivera, Ana Carolina; Carballido, Jessica Andrea; Vidal, Pablo Javier; A Memetic Cellular Genetic Algorithm for Cancer Data Microarray Feature Selection; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 18; 11; 10-2020; 1874-1883 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/3794 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269506744877056 |
score |
13.13397 |