Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
- Autores
- Kaluza, Pablo Federico; Urdapilleta, Eugenio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Neural
Network
Spiking
Perceptron - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33733
Ver los metadatos del registro completo
id |
CONICETDig_515e2a5fa8f7c338b514692cef712e4e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33733 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanismsKaluza, Pablo FedericoUrdapilleta, EugenioNeuralNetworkSpikingPerceptronhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33733Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-111434-6028CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1140%2Fepjb%2Fe2014-50322-yinfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2014-50322-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:45Zoai:ri.conicet.gov.ar:11336/33733instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:45.906CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
title |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
spellingShingle |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms Kaluza, Pablo Federico Neural Network Spiking Perceptron |
title_short |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
title_full |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
title_fullStr |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
title_full_unstemmed |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
title_sort |
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms |
dc.creator.none.fl_str_mv |
Kaluza, Pablo Federico Urdapilleta, Eugenio |
author |
Kaluza, Pablo Federico |
author_facet |
Kaluza, Pablo Federico Urdapilleta, Eugenio |
author_role |
author |
author2 |
Urdapilleta, Eugenio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Neural Network Spiking Perceptron |
topic |
Neural Network Spiking Perceptron |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error. Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33733 Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11 1434-6028 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33733 |
identifier_str_mv |
Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11 1434-6028 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1140%2Fepjb%2Fe2014-50322-y info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2014-50322-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269973305622528 |
score |
13.13397 |