Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

Autores
Kaluza, Pablo Federico; Urdapilleta, Eugenio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Neural
Network
Spiking
Perceptron
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33733

id CONICETDig_515e2a5fa8f7c338b514692cef712e4e
oai_identifier_str oai:ri.conicet.gov.ar:11336/33733
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanismsKaluza, Pablo FedericoUrdapilleta, EugenioNeuralNetworkSpikingPerceptronhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33733Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-111434-6028CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1140%2Fepjb%2Fe2014-50322-yinfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2014-50322-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:45Zoai:ri.conicet.gov.ar:11336/33733instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:45.906CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
title Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
spellingShingle Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
Kaluza, Pablo Federico
Neural
Network
Spiking
Perceptron
title_short Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
title_full Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
title_fullStr Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
title_full_unstemmed Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
title_sort Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
dc.creator.none.fl_str_mv Kaluza, Pablo Federico
Urdapilleta, Eugenio
author Kaluza, Pablo Federico
author_facet Kaluza, Pablo Federico
Urdapilleta, Eugenio
author_role author
author2 Urdapilleta, Eugenio
author2_role author
dc.subject.none.fl_str_mv Neural
Network
Spiking
Perceptron
topic Neural
Network
Spiking
Perceptron
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33733
Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11
1434-6028
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33733
identifier_str_mv Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11
1434-6028
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1140%2Fepjb%2Fe2014-50322-y
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjb/e2014-50322-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269973305622528
score 13.13397