Feature extraction based on bio-inspired model for robust emotion recognition
- Autores
- Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Robust Emotion Recognition
Auditory representation
Multilayer Perceptron - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47569
Ver los metadatos del registro completo
id |
CONICETDig_f29344a0333656c1fe018c906f6eda76 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47569 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Feature extraction based on bio-inspired model for robust emotion recognitionAlbornoz, Enrique MarceloMilone, Diego HumbertoRufiner, Hugo LeonardoRobust Emotion RecognitionAuditory representationMultilayer Perceptronhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaSpringer Heidelberg2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47569Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Feature extraction based on bio-inspired model for robust emotion recognition; Springer Heidelberg; Soft Computing - (Print); 21; 17; 3-2016; 5145-51581472-7643CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00500-016-2110-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-016-2110-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:10Zoai:ri.conicet.gov.ar:11336/47569instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:10.59CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Feature extraction based on bio-inspired model for robust emotion recognition |
title |
Feature extraction based on bio-inspired model for robust emotion recognition |
spellingShingle |
Feature extraction based on bio-inspired model for robust emotion recognition Albornoz, Enrique Marcelo Robust Emotion Recognition Auditory representation Multilayer Perceptron |
title_short |
Feature extraction based on bio-inspired model for robust emotion recognition |
title_full |
Feature extraction based on bio-inspired model for robust emotion recognition |
title_fullStr |
Feature extraction based on bio-inspired model for robust emotion recognition |
title_full_unstemmed |
Feature extraction based on bio-inspired model for robust emotion recognition |
title_sort |
Feature extraction based on bio-inspired model for robust emotion recognition |
dc.creator.none.fl_str_mv |
Albornoz, Enrique Marcelo Milone, Diego Humberto Rufiner, Hugo Leonardo |
author |
Albornoz, Enrique Marcelo |
author_facet |
Albornoz, Enrique Marcelo Milone, Diego Humberto Rufiner, Hugo Leonardo |
author_role |
author |
author2 |
Milone, Diego Humberto Rufiner, Hugo Leonardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Robust Emotion Recognition Auditory representation Multilayer Perceptron |
topic |
Robust Emotion Recognition Auditory representation Multilayer Perceptron |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora. Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47569 Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Feature extraction based on bio-inspired model for robust emotion recognition; Springer Heidelberg; Soft Computing - (Print); 21; 17; 3-2016; 5145-5158 1472-7643 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47569 |
identifier_str_mv |
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Feature extraction based on bio-inspired model for robust emotion recognition; Springer Heidelberg; Soft Computing - (Print); 21; 17; 3-2016; 5145-5158 1472-7643 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00500-016-2110-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-016-2110-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269268993900544 |
score |
13.13397 |