Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition
- Autores
- Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; Miranda, Enrique
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.
Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gomez, Nicolás M.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España - Materia
-
CROSS-POINT
MEMORY
MEMRISTOR
MULTILAYER PERCEPTRON
NEUROMORPHIC
PATTERN RECOGNITION
RESISTIVE-SWITCHING
RRAM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/165149
Ver los metadatos del registro completo
id |
CONICETDig_36e8a257a2fd05a9fee4a77305e42c80 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/165149 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognitionAguirre, Fernando LeonelGomez, Nicolás M.Pazos, Sebastián MatíasPalumbo, Félix Roberto MarioSuñé, JordiMiranda, EnriqueCROSS-POINTMEMORYMEMRISTORMULTILAYER PERCEPTRONNEUROMORPHICPATTERN RECOGNITIONRESISTIVE-SWITCHINGRRAMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gomez, Nicolás M.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; EspañaMDPI AG2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165149Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; et al.; Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition; MDPI AG; Journal of Low Power Electronics and Applications; 11; 1; 3-2021; 1-182079-9268CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9268/11/1/9info:eu-repo/semantics/altIdentifier/doi/10.3390/jlpea11010009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:08Zoai:ri.conicet.gov.ar:11336/165149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:08.383CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
title |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
spellingShingle |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition Aguirre, Fernando Leonel CROSS-POINT MEMORY MEMRISTOR MULTILAYER PERCEPTRON NEUROMORPHIC PATTERN RECOGNITION RESISTIVE-SWITCHING RRAM |
title_short |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
title_full |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
title_fullStr |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
title_full_unstemmed |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
title_sort |
Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition |
dc.creator.none.fl_str_mv |
Aguirre, Fernando Leonel Gomez, Nicolás M. Pazos, Sebastián Matías Palumbo, Félix Roberto Mario Suñé, Jordi Miranda, Enrique |
author |
Aguirre, Fernando Leonel |
author_facet |
Aguirre, Fernando Leonel Gomez, Nicolás M. Pazos, Sebastián Matías Palumbo, Félix Roberto Mario Suñé, Jordi Miranda, Enrique |
author_role |
author |
author2 |
Gomez, Nicolás M. Pazos, Sebastián Matías Palumbo, Félix Roberto Mario Suñé, Jordi Miranda, Enrique |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CROSS-POINT MEMORY MEMRISTOR MULTILAYER PERCEPTRON NEUROMORPHIC PATTERN RECOGNITION RESISTIVE-SWITCHING RRAM |
topic |
CROSS-POINT MEMORY MEMRISTOR MULTILAYER PERCEPTRON NEUROMORPHIC PATTERN RECOGNITION RESISTIVE-SWITCHING RRAM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values. Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gomez, Nicolás M.. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina Fil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España |
description |
In this paper, we extend the application of the Quasi-Static Memdiode model to the real-istic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) in-tended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/165149 Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; et al.; Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition; MDPI AG; Journal of Low Power Electronics and Applications; 11; 1; 3-2021; 1-18 2079-9268 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/165149 |
identifier_str_mv |
Aguirre, Fernando Leonel; Gomez, Nicolás M.; Pazos, Sebastián Matías; Palumbo, Félix Roberto Mario; Suñé, Jordi; et al.; Minimization of the line resistance impact on memdiode-based simulations of multilayer perceptron arrays applied to pattern recognition; MDPI AG; Journal of Low Power Electronics and Applications; 11; 1; 3-2021; 1-18 2079-9268 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9268/11/1/9 info:eu-repo/semantics/altIdentifier/doi/10.3390/jlpea11010009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981158427557888 |
score |
12.48226 |