Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance
- Autores
- Kaoutari, Abdessamad El; Fraunhoffer Navarro, Nicolas Alejandro; Hoare, Owen; Teyssedou, Carlos; Soubeyran, Philippe; Gayet, Odile; Roques, Julie; Lomberk, Gwen; Urrutia, Raul; Dusetti, Nelson; Iovanna, Juan Lucio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Although significant advances have been made recently to characterize the biology of pancreatic ductal adenocarcinoma (PDAC), more efforts are needed to improve our understanding and to face challenges related to the aggressiveness, high mortality rate and chemoresistance of this disease. Methods: In this study, we perform the metabolomics profiling of 77 PDAC patient-derived tumor xenografts (PDTX) to investigate the relationship of metabolic profiles with overall survival (OS) in PDAC patients, tumor phenotypes and resistance to five anticancer drugs (gemcitabine, oxaliplatin, docetaxel, SN-38 and 5-Fluorouracil). Findings: We identified a metabolic signature that was able to predict the clinical outcome of PDAC patients (p < 0.001, HR=2.68 [95% CI: 1.5–4.9]). The correlation analysis showed that this metabolomic signature was significantly correlated with the PDAC molecular gradient (PAMG) (R = 0.44 and p < 0.001) indicating significant association to the transcriptomic phenotypes of tumors. Resistance score established, based on growth rate inhibition metrics using 35 PDTX-derived primary cells, allowed to identify several metabolites related to drug resistance which was globally accompanied by accumulation of several diacy-phospholipids and decrease in lysophospholipids. Interestingly, targeting glycerophospholipid synthesis improved sensitivity to the three tested cytotoxic drugs indicating that interfering with metabolism could be a promising therapeutic strategy to overcome the challenging resistance of PDAC. Interpretation: In conclusion, this study shows that the metabolomic profile of pancreatic PDTX models is strongly associated to clinical outcome, transcriptomic phenotypes and drug resistance. We also showed that targeting the lipidomic profile could be used in combinatory therapies against chemoresistance in PDAC.
Fil: Kaoutari, Abdessamad El. Inserm; Francia
Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Hoare, Owen. Inserm; Francia
Fil: Teyssedou, Carlos. Inserm; Francia
Fil: Soubeyran, Philippe. Inserm; Francia
Fil: Gayet, Odile. Inserm; Francia
Fil: Roques, Julie. Inserm; Francia
Fil: Lomberk, Gwen. Medical College Of Wisconsin; Estados Unidos
Fil: Urrutia, Raul. Medical College Of Wisconsin; Estados Unidos
Fil: Dusetti, Nelson. Inserm; Francia
Fil: Iovanna, Juan Lucio. Inserm; Francia - Materia
-
CHEMOSENSITIVITY
FSG67
METABOLIC SIGNATURE
METABOLOMICS
PANCREATIC CANCER
PRECISION MEDICINE
TUMOR HETEROGENEITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/179475
Ver los metadatos del registro completo
id |
CONICETDig_eb59236f1a24d7401d3895c77a309328 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/179475 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistanceKaoutari, Abdessamad ElFraunhoffer Navarro, Nicolas AlejandroHoare, OwenTeyssedou, CarlosSoubeyran, PhilippeGayet, OdileRoques, JulieLomberk, GwenUrrutia, RaulDusetti, NelsonIovanna, Juan LucioCHEMOSENSITIVITYFSG67METABOLIC SIGNATUREMETABOLOMICSPANCREATIC CANCERPRECISION MEDICINETUMOR HETEROGENEITYhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Background: Although significant advances have been made recently to characterize the biology of pancreatic ductal adenocarcinoma (PDAC), more efforts are needed to improve our understanding and to face challenges related to the aggressiveness, high mortality rate and chemoresistance of this disease. Methods: In this study, we perform the metabolomics profiling of 77 PDAC patient-derived tumor xenografts (PDTX) to investigate the relationship of metabolic profiles with overall survival (OS) in PDAC patients, tumor phenotypes and resistance to five anticancer drugs (gemcitabine, oxaliplatin, docetaxel, SN-38 and 5-Fluorouracil). Findings: We identified a metabolic signature that was able to predict the clinical outcome of PDAC patients (p < 0.001, HR=2.68 [95% CI: 1.5–4.9]). The correlation analysis showed that this metabolomic signature was significantly correlated with the PDAC molecular gradient (PAMG) (R = 0.44 and p < 0.001) indicating significant association to the transcriptomic phenotypes of tumors. Resistance score established, based on growth rate inhibition metrics using 35 PDTX-derived primary cells, allowed to identify several metabolites related to drug resistance which was globally accompanied by accumulation of several diacy-phospholipids and decrease in lysophospholipids. Interestingly, targeting glycerophospholipid synthesis improved sensitivity to the three tested cytotoxic drugs indicating that interfering with metabolism could be a promising therapeutic strategy to overcome the challenging resistance of PDAC. Interpretation: In conclusion, this study shows that the metabolomic profile of pancreatic PDTX models is strongly associated to clinical outcome, transcriptomic phenotypes and drug resistance. We also showed that targeting the lipidomic profile could be used in combinatory therapies against chemoresistance in PDAC.Fil: Kaoutari, Abdessamad El. Inserm; FranciaFil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Hoare, Owen. Inserm; FranciaFil: Teyssedou, Carlos. Inserm; FranciaFil: Soubeyran, Philippe. Inserm; FranciaFil: Gayet, Odile. Inserm; FranciaFil: Roques, Julie. Inserm; FranciaFil: Lomberk, Gwen. Medical College Of Wisconsin; Estados UnidosFil: Urrutia, Raul. Medical College Of Wisconsin; Estados UnidosFil: Dusetti, Nelson. Inserm; FranciaFil: Iovanna, Juan Lucio. Inserm; FranciaElsevier2021-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179475Kaoutari, Abdessamad El; Fraunhoffer Navarro, Nicolas Alejandro; Hoare, Owen; Teyssedou, Carlos; Soubeyran, Philippe; et al.; Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance; Elsevier; EBioMedicine; 66; 4-2021; 1-132352-3964CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ebiom.2021.103332info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352396421001250?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:12Zoai:ri.conicet.gov.ar:11336/179475instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:13.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
title |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
spellingShingle |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance Kaoutari, Abdessamad El CHEMOSENSITIVITY FSG67 METABOLIC SIGNATURE METABOLOMICS PANCREATIC CANCER PRECISION MEDICINE TUMOR HETEROGENEITY |
title_short |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
title_full |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
title_fullStr |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
title_full_unstemmed |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
title_sort |
Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance |
dc.creator.none.fl_str_mv |
Kaoutari, Abdessamad El Fraunhoffer Navarro, Nicolas Alejandro Hoare, Owen Teyssedou, Carlos Soubeyran, Philippe Gayet, Odile Roques, Julie Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Iovanna, Juan Lucio |
author |
Kaoutari, Abdessamad El |
author_facet |
Kaoutari, Abdessamad El Fraunhoffer Navarro, Nicolas Alejandro Hoare, Owen Teyssedou, Carlos Soubeyran, Philippe Gayet, Odile Roques, Julie Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Iovanna, Juan Lucio |
author_role |
author |
author2 |
Fraunhoffer Navarro, Nicolas Alejandro Hoare, Owen Teyssedou, Carlos Soubeyran, Philippe Gayet, Odile Roques, Julie Lomberk, Gwen Urrutia, Raul Dusetti, Nelson Iovanna, Juan Lucio |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CHEMOSENSITIVITY FSG67 METABOLIC SIGNATURE METABOLOMICS PANCREATIC CANCER PRECISION MEDICINE TUMOR HETEROGENEITY |
topic |
CHEMOSENSITIVITY FSG67 METABOLIC SIGNATURE METABOLOMICS PANCREATIC CANCER PRECISION MEDICINE TUMOR HETEROGENEITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: Although significant advances have been made recently to characterize the biology of pancreatic ductal adenocarcinoma (PDAC), more efforts are needed to improve our understanding and to face challenges related to the aggressiveness, high mortality rate and chemoresistance of this disease. Methods: In this study, we perform the metabolomics profiling of 77 PDAC patient-derived tumor xenografts (PDTX) to investigate the relationship of metabolic profiles with overall survival (OS) in PDAC patients, tumor phenotypes and resistance to five anticancer drugs (gemcitabine, oxaliplatin, docetaxel, SN-38 and 5-Fluorouracil). Findings: We identified a metabolic signature that was able to predict the clinical outcome of PDAC patients (p < 0.001, HR=2.68 [95% CI: 1.5–4.9]). The correlation analysis showed that this metabolomic signature was significantly correlated with the PDAC molecular gradient (PAMG) (R = 0.44 and p < 0.001) indicating significant association to the transcriptomic phenotypes of tumors. Resistance score established, based on growth rate inhibition metrics using 35 PDTX-derived primary cells, allowed to identify several metabolites related to drug resistance which was globally accompanied by accumulation of several diacy-phospholipids and decrease in lysophospholipids. Interestingly, targeting glycerophospholipid synthesis improved sensitivity to the three tested cytotoxic drugs indicating that interfering with metabolism could be a promising therapeutic strategy to overcome the challenging resistance of PDAC. Interpretation: In conclusion, this study shows that the metabolomic profile of pancreatic PDTX models is strongly associated to clinical outcome, transcriptomic phenotypes and drug resistance. We also showed that targeting the lipidomic profile could be used in combinatory therapies against chemoresistance in PDAC. Fil: Kaoutari, Abdessamad El. Inserm; Francia Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Hoare, Owen. Inserm; Francia Fil: Teyssedou, Carlos. Inserm; Francia Fil: Soubeyran, Philippe. Inserm; Francia Fil: Gayet, Odile. Inserm; Francia Fil: Roques, Julie. Inserm; Francia Fil: Lomberk, Gwen. Medical College Of Wisconsin; Estados Unidos Fil: Urrutia, Raul. Medical College Of Wisconsin; Estados Unidos Fil: Dusetti, Nelson. Inserm; Francia Fil: Iovanna, Juan Lucio. Inserm; Francia |
description |
Background: Although significant advances have been made recently to characterize the biology of pancreatic ductal adenocarcinoma (PDAC), more efforts are needed to improve our understanding and to face challenges related to the aggressiveness, high mortality rate and chemoresistance of this disease. Methods: In this study, we perform the metabolomics profiling of 77 PDAC patient-derived tumor xenografts (PDTX) to investigate the relationship of metabolic profiles with overall survival (OS) in PDAC patients, tumor phenotypes and resistance to five anticancer drugs (gemcitabine, oxaliplatin, docetaxel, SN-38 and 5-Fluorouracil). Findings: We identified a metabolic signature that was able to predict the clinical outcome of PDAC patients (p < 0.001, HR=2.68 [95% CI: 1.5–4.9]). The correlation analysis showed that this metabolomic signature was significantly correlated with the PDAC molecular gradient (PAMG) (R = 0.44 and p < 0.001) indicating significant association to the transcriptomic phenotypes of tumors. Resistance score established, based on growth rate inhibition metrics using 35 PDTX-derived primary cells, allowed to identify several metabolites related to drug resistance which was globally accompanied by accumulation of several diacy-phospholipids and decrease in lysophospholipids. Interestingly, targeting glycerophospholipid synthesis improved sensitivity to the three tested cytotoxic drugs indicating that interfering with metabolism could be a promising therapeutic strategy to overcome the challenging resistance of PDAC. Interpretation: In conclusion, this study shows that the metabolomic profile of pancreatic PDTX models is strongly associated to clinical outcome, transcriptomic phenotypes and drug resistance. We also showed that targeting the lipidomic profile could be used in combinatory therapies against chemoresistance in PDAC. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/179475 Kaoutari, Abdessamad El; Fraunhoffer Navarro, Nicolas Alejandro; Hoare, Owen; Teyssedou, Carlos; Soubeyran, Philippe; et al.; Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance; Elsevier; EBioMedicine; 66; 4-2021; 1-13 2352-3964 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/179475 |
identifier_str_mv |
Kaoutari, Abdessamad El; Fraunhoffer Navarro, Nicolas Alejandro; Hoare, Owen; Teyssedou, Carlos; Soubeyran, Philippe; et al.; Metabolomic profiling of pancreatic adenocarcinoma reveals key features driving clinical outcome and drug resistance; Elsevier; EBioMedicine; 66; 4-2021; 1-13 2352-3964 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ebiom.2021.103332 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352396421001250?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613602753904640 |
score |
13.070432 |