Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models
- Autores
- Hoare, Owen; Fraunhoffer Navarro, Nicolas Alejandro; Elkaoutari, Abdessamad; Gayet, Odile; Bigonnet, Martin; Roques, Julie; Nicolle, Rémy; McGuckin, Colin; Forraz, Nico; Sohier, Emilie; Tonon, Laurie; Wajda, Pauline; Boyault, Sandrine; Attignon, Valéry; Tabone, Luciana Belen; Barbier, Sandrine; Mignard, Caroline; Duchamp, Olivier; Iovanna, Juan; Dusetti, Nelson J.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental De-sign: Three paired PDAC preclinical models—patient‐derived xenografts (PDX), xenograft‐derived pancreatic organoids (XDPO) and xenograft‐derived primary cell cultures (XDPCC)—were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal‐like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5‐fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity‐associated pathways and PDX and XDPCC for the chemoresistance‐associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal‐like/classical transcriptomic phenotype that strongly in-fluences their global chemosensitivity. Each preclinical model is imperfect but complementary, sug-gesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applica-bility to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features.
Fil: Hoare, Owen. Centre National de la Recherche Scientifique; Francia
Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Elkaoutari, Abdessamad. Centre National de la Recherche Scientifique; Francia
Fil: Gayet, Odile. Centre National de la Recherche Scientifique; Francia
Fil: Bigonnet, Martin. Centre National de la Recherche Scientifique; Francia
Fil: Roques, Julie. Centre National de la Recherche Scientifique; Francia
Fil: Nicolle, Rémy. No especifíca;
Fil: McGuckin, Colin. Cell Therapy Research Institute; Francia
Fil: Forraz, Nico. Cell Therapy Research Institute; Francia
Fil: Sohier, Emilie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia
Fil: Tonon, Laurie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia
Fil: Wajda, Pauline. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia
Fil: Boyault, Sandrine. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia
Fil: Attignon, Valéry. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia
Fil: Tabone, Luciana Belen. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia
Fil: Barbier, Sandrine. No especifíca;
Fil: Mignard, Caroline. No especifíca;
Fil: Duchamp, Olivier. No especifíca;
Fil: Iovanna, Juan. Centre National de la Recherche Scientifique; Francia
Fil: Dusetti, Nelson J.. Centre National de la Recherche Scientifique; Francia - Materia
-
CHEMOSENSITIVITY PREDICTION
IN VITRO MODELS
IN VIVO MODELS
PANCREATIC CANCER
PERSONALIZED MEDICINE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182099
Ver los metadatos del registro completo
id |
CONICETDig_ed3545d24de8bab53d0b0e5316ca06eb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182099 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical modelsHoare, OwenFraunhoffer Navarro, Nicolas AlejandroElkaoutari, AbdessamadGayet, OdileBigonnet, MartinRoques, JulieNicolle, RémyMcGuckin, ColinForraz, NicoSohier, EmilieTonon, LaurieWajda, PaulineBoyault, SandrineAttignon, ValéryTabone, Luciana BelenBarbier, SandrineMignard, CarolineDuchamp, OlivierIovanna, JuanDusetti, Nelson J.CHEMOSENSITIVITY PREDICTIONIN VITRO MODELSIN VIVO MODELSPANCREATIC CANCERPERSONALIZED MEDICINEhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental De-sign: Three paired PDAC preclinical models—patient‐derived xenografts (PDX), xenograft‐derived pancreatic organoids (XDPO) and xenograft‐derived primary cell cultures (XDPCC)—were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal‐like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5‐fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity‐associated pathways and PDX and XDPCC for the chemoresistance‐associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal‐like/classical transcriptomic phenotype that strongly in-fluences their global chemosensitivity. Each preclinical model is imperfect but complementary, sug-gesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applica-bility to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features.Fil: Hoare, Owen. Centre National de la Recherche Scientifique; FranciaFil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Elkaoutari, Abdessamad. Centre National de la Recherche Scientifique; FranciaFil: Gayet, Odile. Centre National de la Recherche Scientifique; FranciaFil: Bigonnet, Martin. Centre National de la Recherche Scientifique; FranciaFil: Roques, Julie. Centre National de la Recherche Scientifique; FranciaFil: Nicolle, Rémy. No especifíca;Fil: McGuckin, Colin. Cell Therapy Research Institute; FranciaFil: Forraz, Nico. Cell Therapy Research Institute; FranciaFil: Sohier, Emilie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Tonon, Laurie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Wajda, Pauline. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Boyault, Sandrine. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Attignon, Valéry. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Tabone, Luciana Belen. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; FranciaFil: Barbier, Sandrine. No especifíca;Fil: Mignard, Caroline. No especifíca;Fil: Duchamp, Olivier. No especifíca;Fil: Iovanna, Juan. Centre National de la Recherche Scientifique; FranciaFil: Dusetti, Nelson J.. Centre National de la Recherche Scientifique; FranciaMDPI2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182099Hoare, Owen; Fraunhoffer Navarro, Nicolas Alejandro; Elkaoutari, Abdessamad; Gayet, Odile; Bigonnet, Martin; et al.; Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models; MDPI; Cancers; 13; 10; 5-2021; 1-132072-6694CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/cancers13102473info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:05Zoai:ri.conicet.gov.ar:11336/182099instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:05.655CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
title |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
spellingShingle |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models Hoare, Owen CHEMOSENSITIVITY PREDICTION IN VITRO MODELS IN VIVO MODELS PANCREATIC CANCER PERSONALIZED MEDICINE |
title_short |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
title_full |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
title_fullStr |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
title_full_unstemmed |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
title_sort |
Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models |
dc.creator.none.fl_str_mv |
Hoare, Owen Fraunhoffer Navarro, Nicolas Alejandro Elkaoutari, Abdessamad Gayet, Odile Bigonnet, Martin Roques, Julie Nicolle, Rémy McGuckin, Colin Forraz, Nico Sohier, Emilie Tonon, Laurie Wajda, Pauline Boyault, Sandrine Attignon, Valéry Tabone, Luciana Belen Barbier, Sandrine Mignard, Caroline Duchamp, Olivier Iovanna, Juan Dusetti, Nelson J. |
author |
Hoare, Owen |
author_facet |
Hoare, Owen Fraunhoffer Navarro, Nicolas Alejandro Elkaoutari, Abdessamad Gayet, Odile Bigonnet, Martin Roques, Julie Nicolle, Rémy McGuckin, Colin Forraz, Nico Sohier, Emilie Tonon, Laurie Wajda, Pauline Boyault, Sandrine Attignon, Valéry Tabone, Luciana Belen Barbier, Sandrine Mignard, Caroline Duchamp, Olivier Iovanna, Juan Dusetti, Nelson J. |
author_role |
author |
author2 |
Fraunhoffer Navarro, Nicolas Alejandro Elkaoutari, Abdessamad Gayet, Odile Bigonnet, Martin Roques, Julie Nicolle, Rémy McGuckin, Colin Forraz, Nico Sohier, Emilie Tonon, Laurie Wajda, Pauline Boyault, Sandrine Attignon, Valéry Tabone, Luciana Belen Barbier, Sandrine Mignard, Caroline Duchamp, Olivier Iovanna, Juan Dusetti, Nelson J. |
author2_role |
author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CHEMOSENSITIVITY PREDICTION IN VITRO MODELS IN VIVO MODELS PANCREATIC CANCER PERSONALIZED MEDICINE |
topic |
CHEMOSENSITIVITY PREDICTION IN VITRO MODELS IN VIVO MODELS PANCREATIC CANCER PERSONALIZED MEDICINE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental De-sign: Three paired PDAC preclinical models—patient‐derived xenografts (PDX), xenograft‐derived pancreatic organoids (XDPO) and xenograft‐derived primary cell cultures (XDPCC)—were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal‐like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5‐fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity‐associated pathways and PDX and XDPCC for the chemoresistance‐associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal‐like/classical transcriptomic phenotype that strongly in-fluences their global chemosensitivity. Each preclinical model is imperfect but complementary, sug-gesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applica-bility to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features. Fil: Hoare, Owen. Centre National de la Recherche Scientifique; Francia Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Elkaoutari, Abdessamad. Centre National de la Recherche Scientifique; Francia Fil: Gayet, Odile. Centre National de la Recherche Scientifique; Francia Fil: Bigonnet, Martin. Centre National de la Recherche Scientifique; Francia Fil: Roques, Julie. Centre National de la Recherche Scientifique; Francia Fil: Nicolle, Rémy. No especifíca; Fil: McGuckin, Colin. Cell Therapy Research Institute; Francia Fil: Forraz, Nico. Cell Therapy Research Institute; Francia Fil: Sohier, Emilie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia Fil: Tonon, Laurie. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia Fil: Wajda, Pauline. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia Fil: Boyault, Sandrine. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia Fil: Attignon, Valéry. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia Fil: Tabone, Luciana Belen. Le Centre Régional de Lutte Contre Le Cancer Léon Bérard; Francia Fil: Barbier, Sandrine. No especifíca; Fil: Mignard, Caroline. No especifíca; Fil: Duchamp, Olivier. No especifíca; Fil: Iovanna, Juan. Centre National de la Recherche Scientifique; Francia Fil: Dusetti, Nelson J.. Centre National de la Recherche Scientifique; Francia |
description |
Purpose: Compare pancreatic ductal adenocarcinoma (PDAC), preclinical models, by their transcriptome and drug response landscapes to evaluate their complementarity. Experimental De-sign: Three paired PDAC preclinical models—patient‐derived xenografts (PDX), xenograft‐derived pancreatic organoids (XDPO) and xenograft‐derived primary cell cultures (XDPCC)—were derived from 20 patients and analyzed at the transcriptomic and chemosensitivity level. Transcriptomic characterization was performed using the basal‐like/classical subtyping and the PDAC molecular gradient (PAMG). Chemosensitivity for gemcitabine, irinotecan, 5‐fluorouracil and oxaliplatin was established and the associated biological pathways were determined using independent component analysis (ICA) on the transcriptome of each model. The selection criteria used to identify the different components was the chemosensitivity score (CSS) found for each drug in each model. Results: PDX was the most dispersed model whereas XDPO and XDPCC were mainly classical and basal-like, respectively. Chemosensitivity scoring determines that PDX and XDPO display a positive correlation for three out of four drugs tested, whereas PDX and XDPCC did not correlate. No match was observed for each tumor chemosensitivity in the different models. Finally, pathway analysis shows a significant association between PDX and XDPO for the chemosensitivity‐associated pathways and PDX and XDPCC for the chemoresistance‐associated pathways. Conclusions: Each PDAC preclinical model possesses a unique basal‐like/classical transcriptomic phenotype that strongly in-fluences their global chemosensitivity. Each preclinical model is imperfect but complementary, sug-gesting that a more representative approach of the clinical reality could be obtained by combining them. Translational Relevance: The identification of molecular signatures that underpin drug sensitivity to chemotherapy in PDAC remains clinically challenging. Importantly, the vast majority of studies using preclinical in vivo and in vitro models fail when transferred to patients in a clinical setting despite initially promising results. This study presents for the first time a comparison between three preclinical models directly derived from the same patients. We show that their applica-bility to preclinical studies should be considered with a complementary focus, avoiding tumor-based direct extrapolations, which might generate misleading conclusions and consequently the overlook of clinically relevant features. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182099 Hoare, Owen; Fraunhoffer Navarro, Nicolas Alejandro; Elkaoutari, Abdessamad; Gayet, Odile; Bigonnet, Martin; et al.; Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models; MDPI; Cancers; 13; 10; 5-2021; 1-13 2072-6694 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182099 |
identifier_str_mv |
Hoare, Owen; Fraunhoffer Navarro, Nicolas Alejandro; Elkaoutari, Abdessamad; Gayet, Odile; Bigonnet, Martin; et al.; Exploring the complementarity of pancreatic ductal adenocarcinoma preclinical models; MDPI; Cancers; 13; 10; 5-2021; 1-13 2072-6694 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/cancers13102473 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613355678990336 |
score |
13.070432 |