Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma

Autores
Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; Harlé, A.; Rebours, V.; Turpin, A.; Ben Abdelghani, M.; Mitry, E.; Biagi, J.; Chanez, B.; Bigonnet, M.; Lopez, A.; Evesque, L.; Lecomte, T.; Assenat, E.; Bouché, O.; Renouf, D.J.; Lambert, A.; Monard, L.; Mauduit, M.; Cros, J.; Iovanna, J.; Dusetti, N.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Hammel, P.. Inserm; Francia
Fil: Conroy, T.. Inserm; Francia
Fil: Nicolle, R.. Inserm; Francia
Fil: Bachet, J. B.. Sorbonne University; Francia
Fil: Harlé, A.. Université de Lorraine; Francia
Fil: Rebours, V.. Inserm; Francia
Fil: Turpin, A.. Inserm; Francia
Fil: Ben Abdelghani, M.. Inserm; Francia
Fil: Mitry, E.. Inserm; Francia
Fil: Biagi, J.. Queens University; Canadá
Fil: Chanez, B.. Inserm; Francia
Fil: Bigonnet, M.. Luminy Science and Technology Park; Francia
Fil: Lopez, A.. No especifíca;
Fil: Evesque, L.. Antoine Lacassagne Center; Francia
Fil: Lecomte, T.. Inserm; Francia
Fil: Assenat, E.. Centre Hospitalier Universitaire de Saint-Eloi; Francia
Fil: Bouché, O.. Centre Hospitalier Universitaire Robert Debré; Francia
Fil: Renouf, D.J.. University of British Columbia; Canadá
Fil: Lambert, A.. Université de Lorraine; Francia
Fil: Monard, L.. No especifíca;
Fil: Mauduit, M.. No especifíca;
Fil: Cros, J.. Inserm; Francia
Fil: Iovanna, J.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina. Universidad Nacional Arturo Jauretche; Argentina
Fil: Dusetti, N.. Inserm; Francia
Materia
PANCREATIC CANCER
ARTIFICIAL INTELIGENCE
PRODIGE 24
TRANSCRIPTOMIC SIGNATURES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267437

id CONICETDig_332290eefc83b2fd5dfafe56ef228c74
oai_identifier_str oai:ri.conicet.gov.ar:11336/267437
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinomaFraunhoffer Navarro, Nicolas AlejandroHammel, P.Conroy, T.Nicolle, R.Bachet, J. B.Harlé, A.Rebours, V.Turpin, A.Ben Abdelghani, M.Mitry, E.Biagi, J.Chanez, B.Bigonnet, M.Lopez, A.Evesque, L.Lecomte, T.Assenat, E.Bouché, O.Renouf, D.J.Lambert, A.Monard, L.Mauduit, M.Cros, J.Iovanna, J.Dusetti, N.PANCREATIC CANCERARTIFICIAL INTELIGENCEPRODIGE 24TRANSCRIPTOMIC SIGNATUREShttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Hammel, P.. Inserm; FranciaFil: Conroy, T.. Inserm; FranciaFil: Nicolle, R.. Inserm; FranciaFil: Bachet, J. B.. Sorbonne University; FranciaFil: Harlé, A.. Université de Lorraine; FranciaFil: Rebours, V.. Inserm; FranciaFil: Turpin, A.. Inserm; FranciaFil: Ben Abdelghani, M.. Inserm; FranciaFil: Mitry, E.. Inserm; FranciaFil: Biagi, J.. Queens University; CanadáFil: Chanez, B.. Inserm; FranciaFil: Bigonnet, M.. Luminy Science and Technology Park; FranciaFil: Lopez, A.. No especifíca;Fil: Evesque, L.. Antoine Lacassagne Center; FranciaFil: Lecomte, T.. Inserm; FranciaFil: Assenat, E.. Centre Hospitalier Universitaire de Saint-Eloi; FranciaFil: Bouché, O.. Centre Hospitalier Universitaire Robert Debré; FranciaFil: Renouf, D.J.. University of British Columbia; CanadáFil: Lambert, A.. Université de Lorraine; FranciaFil: Monard, L.. No especifíca;Fil: Mauduit, M.. No especifíca;Fil: Cros, J.. Inserm; FranciaFil: Iovanna, J.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina. Universidad Nacional Arturo Jauretche; ArgentinaFil: Dusetti, N.. Inserm; FranciaOxford University Press2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267437Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; et al.; Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma; Oxford University Press; Annals Of Oncology; 35; 9; 9-2024; 780-7910923-7534CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0923753424007415info:eu-repo/semantics/altIdentifier/doi/10.1016/j.annonc.2024.06.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:48Zoai:ri.conicet.gov.ar:11336/267437instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:48.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
title Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
spellingShingle Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
Fraunhoffer Navarro, Nicolas Alejandro
PANCREATIC CANCER
ARTIFICIAL INTELIGENCE
PRODIGE 24
TRANSCRIPTOMIC SIGNATURES
title_short Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
title_full Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
title_fullStr Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
title_full_unstemmed Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
title_sort Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
dc.creator.none.fl_str_mv Fraunhoffer Navarro, Nicolas Alejandro
Hammel, P.
Conroy, T.
Nicolle, R.
Bachet, J. B.
Harlé, A.
Rebours, V.
Turpin, A.
Ben Abdelghani, M.
Mitry, E.
Biagi, J.
Chanez, B.
Bigonnet, M.
Lopez, A.
Evesque, L.
Lecomte, T.
Assenat, E.
Bouché, O.
Renouf, D.J.
Lambert, A.
Monard, L.
Mauduit, M.
Cros, J.
Iovanna, J.
Dusetti, N.
author Fraunhoffer Navarro, Nicolas Alejandro
author_facet Fraunhoffer Navarro, Nicolas Alejandro
Hammel, P.
Conroy, T.
Nicolle, R.
Bachet, J. B.
Harlé, A.
Rebours, V.
Turpin, A.
Ben Abdelghani, M.
Mitry, E.
Biagi, J.
Chanez, B.
Bigonnet, M.
Lopez, A.
Evesque, L.
Lecomte, T.
Assenat, E.
Bouché, O.
Renouf, D.J.
Lambert, A.
Monard, L.
Mauduit, M.
Cros, J.
Iovanna, J.
Dusetti, N.
author_role author
author2 Hammel, P.
Conroy, T.
Nicolle, R.
Bachet, J. B.
Harlé, A.
Rebours, V.
Turpin, A.
Ben Abdelghani, M.
Mitry, E.
Biagi, J.
Chanez, B.
Bigonnet, M.
Lopez, A.
Evesque, L.
Lecomte, T.
Assenat, E.
Bouché, O.
Renouf, D.J.
Lambert, A.
Monard, L.
Mauduit, M.
Cros, J.
Iovanna, J.
Dusetti, N.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv PANCREATIC CANCER
ARTIFICIAL INTELIGENCE
PRODIGE 24
TRANSCRIPTOMIC SIGNATURES
topic PANCREATIC CANCER
ARTIFICIAL INTELIGENCE
PRODIGE 24
TRANSCRIPTOMIC SIGNATURES
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Hammel, P.. Inserm; Francia
Fil: Conroy, T.. Inserm; Francia
Fil: Nicolle, R.. Inserm; Francia
Fil: Bachet, J. B.. Sorbonne University; Francia
Fil: Harlé, A.. Université de Lorraine; Francia
Fil: Rebours, V.. Inserm; Francia
Fil: Turpin, A.. Inserm; Francia
Fil: Ben Abdelghani, M.. Inserm; Francia
Fil: Mitry, E.. Inserm; Francia
Fil: Biagi, J.. Queens University; Canadá
Fil: Chanez, B.. Inserm; Francia
Fil: Bigonnet, M.. Luminy Science and Technology Park; Francia
Fil: Lopez, A.. No especifíca;
Fil: Evesque, L.. Antoine Lacassagne Center; Francia
Fil: Lecomte, T.. Inserm; Francia
Fil: Assenat, E.. Centre Hospitalier Universitaire de Saint-Eloi; Francia
Fil: Bouché, O.. Centre Hospitalier Universitaire Robert Debré; Francia
Fil: Renouf, D.J.. University of British Columbia; Canadá
Fil: Lambert, A.. Université de Lorraine; Francia
Fil: Monard, L.. No especifíca;
Fil: Mauduit, M.. No especifíca;
Fil: Cros, J.. Inserm; Francia
Fil: Iovanna, J.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina. Universidad Nacional Arturo Jauretche; Argentina
Fil: Dusetti, N.. Inserm; Francia
description Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267437
Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; et al.; Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma; Oxford University Press; Annals Of Oncology; 35; 9; 9-2024; 780-791
0923-7534
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267437
identifier_str_mv Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; et al.; Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma; Oxford University Press; Annals Of Oncology; 35; 9; 9-2024; 780-791
0923-7534
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0923753424007415
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.annonc.2024.06.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614058432528384
score 13.070432