Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma
- Autores
- Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; Harlé, A.; Rebours, V.; Turpin, A.; Ben Abdelghani, M.; Mitry, E.; Biagi, J.; Chanez, B.; Bigonnet, M.; Lopez, A.; Evesque, L.; Lecomte, T.; Assenat, E.; Bouché, O.; Renouf, D.J.; Lambert, A.; Monard, L.; Mauduit, M.; Cros, J.; Iovanna, J.; Dusetti, N.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.
Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Hammel, P.. Inserm; Francia
Fil: Conroy, T.. Inserm; Francia
Fil: Nicolle, R.. Inserm; Francia
Fil: Bachet, J. B.. Sorbonne University; Francia
Fil: Harlé, A.. Université de Lorraine; Francia
Fil: Rebours, V.. Inserm; Francia
Fil: Turpin, A.. Inserm; Francia
Fil: Ben Abdelghani, M.. Inserm; Francia
Fil: Mitry, E.. Inserm; Francia
Fil: Biagi, J.. Queens University; Canadá
Fil: Chanez, B.. Inserm; Francia
Fil: Bigonnet, M.. Luminy Science and Technology Park; Francia
Fil: Lopez, A.. No especifíca;
Fil: Evesque, L.. Antoine Lacassagne Center; Francia
Fil: Lecomte, T.. Inserm; Francia
Fil: Assenat, E.. Centre Hospitalier Universitaire de Saint-Eloi; Francia
Fil: Bouché, O.. Centre Hospitalier Universitaire Robert Debré; Francia
Fil: Renouf, D.J.. University of British Columbia; Canadá
Fil: Lambert, A.. Université de Lorraine; Francia
Fil: Monard, L.. No especifíca;
Fil: Mauduit, M.. No especifíca;
Fil: Cros, J.. Inserm; Francia
Fil: Iovanna, J.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina. Universidad Nacional Arturo Jauretche; Argentina
Fil: Dusetti, N.. Inserm; Francia - Materia
-
PANCREATIC CANCER
ARTIFICIAL INTELIGENCE
PRODIGE 24
TRANSCRIPTOMIC SIGNATURES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267437
Ver los metadatos del registro completo
id |
CONICETDig_332290eefc83b2fd5dfafe56ef228c74 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267437 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinomaFraunhoffer Navarro, Nicolas AlejandroHammel, P.Conroy, T.Nicolle, R.Bachet, J. B.Harlé, A.Rebours, V.Turpin, A.Ben Abdelghani, M.Mitry, E.Biagi, J.Chanez, B.Bigonnet, M.Lopez, A.Evesque, L.Lecomte, T.Assenat, E.Bouché, O.Renouf, D.J.Lambert, A.Monard, L.Mauduit, M.Cros, J.Iovanna, J.Dusetti, N.PANCREATIC CANCERARTIFICIAL INTELIGENCEPRODIGE 24TRANSCRIPTOMIC SIGNATUREShttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM.Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Hammel, P.. Inserm; FranciaFil: Conroy, T.. Inserm; FranciaFil: Nicolle, R.. Inserm; FranciaFil: Bachet, J. B.. Sorbonne University; FranciaFil: Harlé, A.. Université de Lorraine; FranciaFil: Rebours, V.. Inserm; FranciaFil: Turpin, A.. Inserm; FranciaFil: Ben Abdelghani, M.. Inserm; FranciaFil: Mitry, E.. Inserm; FranciaFil: Biagi, J.. Queens University; CanadáFil: Chanez, B.. Inserm; FranciaFil: Bigonnet, M.. Luminy Science and Technology Park; FranciaFil: Lopez, A.. No especifíca;Fil: Evesque, L.. Antoine Lacassagne Center; FranciaFil: Lecomte, T.. Inserm; FranciaFil: Assenat, E.. Centre Hospitalier Universitaire de Saint-Eloi; FranciaFil: Bouché, O.. Centre Hospitalier Universitaire Robert Debré; FranciaFil: Renouf, D.J.. University of British Columbia; CanadáFil: Lambert, A.. Université de Lorraine; FranciaFil: Monard, L.. No especifíca;Fil: Mauduit, M.. No especifíca;Fil: Cros, J.. Inserm; FranciaFil: Iovanna, J.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina. Universidad Nacional Arturo Jauretche; ArgentinaFil: Dusetti, N.. Inserm; FranciaOxford University Press2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267437Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; et al.; Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma; Oxford University Press; Annals Of Oncology; 35; 9; 9-2024; 780-7910923-7534CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0923753424007415info:eu-repo/semantics/altIdentifier/doi/10.1016/j.annonc.2024.06.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:48Zoai:ri.conicet.gov.ar:11336/267437instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:48.357CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
title |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
spellingShingle |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma Fraunhoffer Navarro, Nicolas Alejandro PANCREATIC CANCER ARTIFICIAL INTELIGENCE PRODIGE 24 TRANSCRIPTOMIC SIGNATURES |
title_short |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
title_full |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
title_fullStr |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
title_full_unstemmed |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
title_sort |
Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma |
dc.creator.none.fl_str_mv |
Fraunhoffer Navarro, Nicolas Alejandro Hammel, P. Conroy, T. Nicolle, R. Bachet, J. B. Harlé, A. Rebours, V. Turpin, A. Ben Abdelghani, M. Mitry, E. Biagi, J. Chanez, B. Bigonnet, M. Lopez, A. Evesque, L. Lecomte, T. Assenat, E. Bouché, O. Renouf, D.J. Lambert, A. Monard, L. Mauduit, M. Cros, J. Iovanna, J. Dusetti, N. |
author |
Fraunhoffer Navarro, Nicolas Alejandro |
author_facet |
Fraunhoffer Navarro, Nicolas Alejandro Hammel, P. Conroy, T. Nicolle, R. Bachet, J. B. Harlé, A. Rebours, V. Turpin, A. Ben Abdelghani, M. Mitry, E. Biagi, J. Chanez, B. Bigonnet, M. Lopez, A. Evesque, L. Lecomte, T. Assenat, E. Bouché, O. Renouf, D.J. Lambert, A. Monard, L. Mauduit, M. Cros, J. Iovanna, J. Dusetti, N. |
author_role |
author |
author2 |
Hammel, P. Conroy, T. Nicolle, R. Bachet, J. B. Harlé, A. Rebours, V. Turpin, A. Ben Abdelghani, M. Mitry, E. Biagi, J. Chanez, B. Bigonnet, M. Lopez, A. Evesque, L. Lecomte, T. Assenat, E. Bouché, O. Renouf, D.J. Lambert, A. Monard, L. Mauduit, M. Cros, J. Iovanna, J. Dusetti, N. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
PANCREATIC CANCER ARTIFICIAL INTELIGENCE PRODIGE 24 TRANSCRIPTOMIC SIGNATURES |
topic |
PANCREATIC CANCER ARTIFICIAL INTELIGENCE PRODIGE 24 TRANSCRIPTOMIC SIGNATURES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM. Fil: Fraunhoffer Navarro, Nicolas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina Fil: Hammel, P.. Inserm; Francia Fil: Conroy, T.. Inserm; Francia Fil: Nicolle, R.. Inserm; Francia Fil: Bachet, J. B.. Sorbonne University; Francia Fil: Harlé, A.. Université de Lorraine; Francia Fil: Rebours, V.. Inserm; Francia Fil: Turpin, A.. Inserm; Francia Fil: Ben Abdelghani, M.. Inserm; Francia Fil: Mitry, E.. Inserm; Francia Fil: Biagi, J.. Queens University; Canadá Fil: Chanez, B.. Inserm; Francia Fil: Bigonnet, M.. Luminy Science and Technology Park; Francia Fil: Lopez, A.. No especifíca; Fil: Evesque, L.. Antoine Lacassagne Center; Francia Fil: Lecomte, T.. Inserm; Francia Fil: Assenat, E.. Centre Hospitalier Universitaire de Saint-Eloi; Francia Fil: Bouché, O.. Centre Hospitalier Universitaire Robert Debré; Francia Fil: Renouf, D.J.. University of British Columbia; Canadá Fil: Lambert, A.. Université de Lorraine; Francia Fil: Monard, L.. No especifíca; Fil: Mauduit, M.. No especifíca; Fil: Cros, J.. Inserm; Francia Fil: Iovanna, J.. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; Argentina. Universidad Nacional Arturo Jauretche; Argentina Fil: Dusetti, N.. Inserm; Francia |
description |
Background: After surgical resection of pancreatic ductal adenocarcinoma (PDAC), patients are predominantly treated with adjuvant chemotherapy, commonly consisting of gemcitabine (GEM)-based regimens or the modified FOLFIRINOX (mFFX) regimen. While mFFX regimen has been shown to be more effective than GEM-based regimens, it is also associated with higher toxicity. Current treatment decisions are based on patient performance status rather than on the molecular characteristics of the tumor. To address this gap, the goal of this study was to develop drug-specific transcriptomic signatures for personalized chemotherapy treatment.Patients and methods: We used PDAC datasets from preclinical models, encompassing chemotherapy response profiles for the mFFX regimen components. From them we identified specific gene transcripts associated with chemotherapy response. Three transcriptomic artificial intelligence signatures were obtained by combining independent component analysis and the least absolute shrinkage and selection operator-random forest approach. We integrated a previously developed GEM signature with three newly developed ones. The machine learning strategy employed to enhance these signatures incorporates transcriptomic features from the tumor microenvironment, leading to the development of the ´Pancreas-View´ tool ultimately clinically validated in a cohort of 343 patients from the PRODIGE-24/CCTG PA6 trial.Results: Patients who were predicted to be sensitive to the administered drugs (n = 164; 47.8%) had longer disease-free survival (DFS) than the other patients. The median DFS in the mFFX-sensitive group treated with mFFX was 50.0 months [stratified hazard ratio (HR) 0.31, 95% confidence interval (CI) 0.21-0.44, P < 0.001] and 33.7 months (stratified HR 0.40, 95% CI 0.17-0.59, P < 0.001) in the GEM-sensitive group when treated with GEM. Comparatively patients with signature predictions unmatched with the treatments (n = 86; 25.1%) or those resistant to all drugs (n = 93; 27.1%) had shorter DFS (10.6 and 10.8 months, respectively).Conclusions: This study presents a transcriptome-based tool that was developed using preclinical models and machine learning to accurately predict sensitivity to mFFX and GEM. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267437 Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; et al.; Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma; Oxford University Press; Annals Of Oncology; 35; 9; 9-2024; 780-791 0923-7534 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267437 |
identifier_str_mv |
Fraunhoffer Navarro, Nicolas Alejandro; Hammel, P.; Conroy, T.; Nicolle, R.; Bachet, J. B.; et al.; Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma; Oxford University Press; Annals Of Oncology; 35; 9; 9-2024; 780-791 0923-7534 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0923753424007415 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.annonc.2024.06.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614058432528384 |
score |
13.070432 |