Pointwise convergence to initial data of heat and Laplace equations
- Autores
- Garrigos Aniorte, Gustavo; Hartzstein, Silvia Inés; Signes, Teresa; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We find optimal integrability conditions on a function f for the existence of its heat and Poisson integrals, e−tLf(x) and e−t √Lf(x), solutions respectively of Ut = −LU and Utt = LU on Rd+1 + with initial datum f. As a consequence we identify the most general class of weights v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover, if 1
Fil: Garrigos Aniorte, Gustavo. Universidad de Murcia; España
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Signes, Teresa. Universidad de Murcia; España
Fil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; España
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Hermite Operator
Ornstein-Uhlenbeck
Poisson integral
Weighted Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31895
Ver los metadatos del registro completo
id |
CONICETDig_e9f416a9157e1672f886fa3132b7bed7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31895 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pointwise convergence to initial data of heat and Laplace equationsGarrigos Aniorte, GustavoHartzstein, Silvia InésSignes, TeresaTorrea Hernández, José LuisViviani, Beatriz EleonoraHermite OperatorOrnstein-UhlenbeckPoisson integralWeighted Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We find optimal integrability conditions on a function f for the existence of its heat and Poisson integrals, e−tLf(x) and e−t √Lf(x), solutions respectively of Ut = −LU and Utt = LU on Rd+1 + with initial datum f. As a consequence we identify the most general class of weights v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover, if 1 <p< ∞ we additionally show that for such weights the associated local maximal operators are strongly bounded from Lp(v) → Lp(u) for some other weight u(x).Fil: Garrigos Aniorte, Gustavo. Universidad de Murcia; EspañaFil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Signes, Teresa. Universidad de Murcia; EspañaFil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; EspañaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaAmerican Mathematical Society2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31895Viviani, Beatriz Eleonora; Torrea Hernández, José Luis; Signes, Teresa; Hartzstein, Silvia Inés; Garrigos Aniorte, Gustavo; Pointwise convergence to initial data of heat and Laplace equations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 9-2016; 6575-66000002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2016-368-09/S0002-9947-2016-06554-X/info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6554info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:43:43Zoai:ri.conicet.gov.ar:11336/31895instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:43:43.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pointwise convergence to initial data of heat and Laplace equations |
title |
Pointwise convergence to initial data of heat and Laplace equations |
spellingShingle |
Pointwise convergence to initial data of heat and Laplace equations Garrigos Aniorte, Gustavo Hermite Operator Ornstein-Uhlenbeck Poisson integral Weighted Inequalities |
title_short |
Pointwise convergence to initial data of heat and Laplace equations |
title_full |
Pointwise convergence to initial data of heat and Laplace equations |
title_fullStr |
Pointwise convergence to initial data of heat and Laplace equations |
title_full_unstemmed |
Pointwise convergence to initial data of heat and Laplace equations |
title_sort |
Pointwise convergence to initial data of heat and Laplace equations |
dc.creator.none.fl_str_mv |
Garrigos Aniorte, Gustavo Hartzstein, Silvia Inés Signes, Teresa Torrea Hernández, José Luis Viviani, Beatriz Eleonora |
author |
Garrigos Aniorte, Gustavo |
author_facet |
Garrigos Aniorte, Gustavo Hartzstein, Silvia Inés Signes, Teresa Torrea Hernández, José Luis Viviani, Beatriz Eleonora |
author_role |
author |
author2 |
Hartzstein, Silvia Inés Signes, Teresa Torrea Hernández, José Luis Viviani, Beatriz Eleonora |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Hermite Operator Ornstein-Uhlenbeck Poisson integral Weighted Inequalities |
topic |
Hermite Operator Ornstein-Uhlenbeck Poisson integral Weighted Inequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We find optimal integrability conditions on a function f for the existence of its heat and Poisson integrals, e−tLf(x) and e−t √Lf(x), solutions respectively of Ut = −LU and Utt = LU on Rd+1 + with initial datum f. As a consequence we identify the most general class of weights v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover, if 1 <p< ∞ we additionally show that for such weights the associated local maximal operators are strongly bounded from Lp(v) → Lp(u) for some other weight u(x). Fil: Garrigos Aniorte, Gustavo. Universidad de Murcia; España Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Signes, Teresa. Universidad de Murcia; España Fil: Torrea Hernández, José Luis. Universidad Autónoma de Madrid; España Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We find optimal integrability conditions on a function f for the existence of its heat and Poisson integrals, e−tLf(x) and e−t √Lf(x), solutions respectively of Ut = −LU and Utt = LU on Rd+1 + with initial datum f. As a consequence we identify the most general class of weights v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover, if 1 <p< ∞ we additionally show that for such weights the associated local maximal operators are strongly bounded from Lp(v) → Lp(u) for some other weight u(x). |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31895 Viviani, Beatriz Eleonora; Torrea Hernández, José Luis; Signes, Teresa; Hartzstein, Silvia Inés; Garrigos Aniorte, Gustavo; Pointwise convergence to initial data of heat and Laplace equations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 9-2016; 6575-6600 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31895 |
identifier_str_mv |
Viviani, Beatriz Eleonora; Torrea Hernández, José Luis; Signes, Teresa; Hartzstein, Silvia Inés; Garrigos Aniorte, Gustavo; Pointwise convergence to initial data of heat and Laplace equations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 9-2016; 6575-6600 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2016-368-09/S0002-9947-2016-06554-X/ info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/6554 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083541944762368 |
score |
13.22299 |