Endpoint estimates for higher order Gaussian Riesz transforms
- Autores
- Berra, Fabio Martín; Dalmasso, Estefanía Dafne; Scotto, Roberto
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We will show that, contrary to the behavior of the higher order Riesz transforms studied so far on the atomic Hardy space H1 (Rn, γ), associated with the Ornstein-Uhlenbeck operator with respect to the n-dimensional Gaussian measure γ, the new Gaussian Riesz transforms are bounded from H1 (Rn, γ) to L1 (Rn, γ), for any order and dimension n. We will also prove that the classical Gaussian Riesz transforms of higher order are bounded from an adequate subspace of H1 (Rn, γ) into L1 (Rn, γ), extending T. Bruno (2019) for the first order case.
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Scotto, Roberto. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina - Materia
-
ENDPOINT ESTIMATES
RIESZ TRANSFORMS
GAUSSIAN MEASURE
ORNSTEIN-UHLENBECK OPERATOR
HARDY SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273735
Ver los metadatos del registro completo
| id |
CONICETDig_086f01e796cda0062ba7866c2b54d97a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273735 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Endpoint estimates for higher order Gaussian Riesz transformsBerra, Fabio MartínDalmasso, Estefanía DafneScotto, RobertoENDPOINT ESTIMATESRIESZ TRANSFORMSGAUSSIAN MEASUREORNSTEIN-UHLENBECK OPERATORHARDY SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We will show that, contrary to the behavior of the higher order Riesz transforms studied so far on the atomic Hardy space H1 (Rn, γ), associated with the Ornstein-Uhlenbeck operator with respect to the n-dimensional Gaussian measure γ, the new Gaussian Riesz transforms are bounded from H1 (Rn, γ) to L1 (Rn, γ), for any order and dimension n. We will also prove that the classical Gaussian Riesz transforms of higher order are bounded from an adequate subspace of H1 (Rn, γ) into L1 (Rn, γ), extending T. Bruno (2019) for the first order case.Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Scotto, Roberto. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaUnión Matemática Argentina2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273735Berra, Fabio Martín; Dalmasso, Estefanía Dafne; Scotto, Roberto; Endpoint estimates for higher order Gaussian Riesz transforms; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 2-2025; 1-201669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/4878info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4878info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:32Zoai:ri.conicet.gov.ar:11336/273735instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:32.551CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Endpoint estimates for higher order Gaussian Riesz transforms |
| title |
Endpoint estimates for higher order Gaussian Riesz transforms |
| spellingShingle |
Endpoint estimates for higher order Gaussian Riesz transforms Berra, Fabio Martín ENDPOINT ESTIMATES RIESZ TRANSFORMS GAUSSIAN MEASURE ORNSTEIN-UHLENBECK OPERATOR HARDY SPACES |
| title_short |
Endpoint estimates for higher order Gaussian Riesz transforms |
| title_full |
Endpoint estimates for higher order Gaussian Riesz transforms |
| title_fullStr |
Endpoint estimates for higher order Gaussian Riesz transforms |
| title_full_unstemmed |
Endpoint estimates for higher order Gaussian Riesz transforms |
| title_sort |
Endpoint estimates for higher order Gaussian Riesz transforms |
| dc.creator.none.fl_str_mv |
Berra, Fabio Martín Dalmasso, Estefanía Dafne Scotto, Roberto |
| author |
Berra, Fabio Martín |
| author_facet |
Berra, Fabio Martín Dalmasso, Estefanía Dafne Scotto, Roberto |
| author_role |
author |
| author2 |
Dalmasso, Estefanía Dafne Scotto, Roberto |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ENDPOINT ESTIMATES RIESZ TRANSFORMS GAUSSIAN MEASURE ORNSTEIN-UHLENBECK OPERATOR HARDY SPACES |
| topic |
ENDPOINT ESTIMATES RIESZ TRANSFORMS GAUSSIAN MEASURE ORNSTEIN-UHLENBECK OPERATOR HARDY SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We will show that, contrary to the behavior of the higher order Riesz transforms studied so far on the atomic Hardy space H1 (Rn, γ), associated with the Ornstein-Uhlenbeck operator with respect to the n-dimensional Gaussian measure γ, the new Gaussian Riesz transforms are bounded from H1 (Rn, γ) to L1 (Rn, γ), for any order and dimension n. We will also prove that the classical Gaussian Riesz transforms of higher order are bounded from an adequate subspace of H1 (Rn, γ) into L1 (Rn, γ), extending T. Bruno (2019) for the first order case. Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dalmasso, Estefanía Dafne. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Scotto, Roberto. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina |
| description |
We will show that, contrary to the behavior of the higher order Riesz transforms studied so far on the atomic Hardy space H1 (Rn, γ), associated with the Ornstein-Uhlenbeck operator with respect to the n-dimensional Gaussian measure γ, the new Gaussian Riesz transforms are bounded from H1 (Rn, γ) to L1 (Rn, γ), for any order and dimension n. We will also prove that the classical Gaussian Riesz transforms of higher order are bounded from an adequate subspace of H1 (Rn, γ) into L1 (Rn, γ), extending T. Bruno (2019) for the first order case. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273735 Berra, Fabio Martín; Dalmasso, Estefanía Dafne; Scotto, Roberto; Endpoint estimates for higher order Gaussian Riesz transforms; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 2-2025; 1-20 1669-9637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/273735 |
| identifier_str_mv |
Berra, Fabio Martín; Dalmasso, Estefanía Dafne; Scotto, Roberto; Endpoint estimates for higher order Gaussian Riesz transforms; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 2-2025; 1-20 1669-9637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/4878 info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4878 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597131670061056 |
| score |
12.976206 |