Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups
- Autores
- Almeida, Victor; Betancor, Jorge J.; Fariña, Juan C.; Quijano, Pablo; Rodríguez Mesa, Lourdes
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we establish Lp(Rd, γ∞)-boundedness properties for square functions involving time and spatial derivatives of Ornstein-Uhlenbeck semigroups. Here γ∞ denotes the invariant measure. In order to prove the strong type results for 1 < p < ∞ we use R-boundedness. The weak type (1,1) property is established by studying separately global and local operators defined for the square Littlewood-Paley functions. By the way we prove Lp(Rd, γ∞)-boundedness properties for maximal and variation operators for Ornstein-Uhlenbeck semigroups.
Fil: Almeida, Victor. Universidad de la Laguna. Departamento de Analisis Matematico; España
Fil: Betancor, Jorge J.. Universidad de la Laguna. Departamento de Analisis Matematico; España
Fil: Fariña, Juan C.. Universidad de la Laguna. Departamento de Analisis Matematico; España
Fil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Rodríguez Mesa, Lourdes. Universidad de la Laguna. Departamento de Analisis Matematico; España - Materia
-
Littlewood paley functions
Variation operator
Nonsymmetric Ornstein-Uhlenbeck. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215812
Ver los metadatos del registro completo
id |
CONICETDig_b5b9a4ab3e2a851e563fb77699de46dd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215812 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroupsAlmeida, VictorBetancor, Jorge J.Fariña, Juan C.Quijano, PabloRodríguez Mesa, LourdesLittlewood paley functionsVariation operatorNonsymmetric Ornstein-Uhlenbeck.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we establish Lp(Rd, γ∞)-boundedness properties for square functions involving time and spatial derivatives of Ornstein-Uhlenbeck semigroups. Here γ∞ denotes the invariant measure. In order to prove the strong type results for 1 < p < ∞ we use R-boundedness. The weak type (1,1) property is established by studying separately global and local operators defined for the square Littlewood-Paley functions. By the way we prove Lp(Rd, γ∞)-boundedness properties for maximal and variation operators for Ornstein-Uhlenbeck semigroups.Fil: Almeida, Victor. Universidad de la Laguna. Departamento de Analisis Matematico; EspañaFil: Betancor, Jorge J.. Universidad de la Laguna. Departamento de Analisis Matematico; EspañaFil: Fariña, Juan C.. Universidad de la Laguna. Departamento de Analisis Matematico; EspañaFil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Rodríguez Mesa, Lourdes. Universidad de la Laguna. Departamento de Analisis Matematico; EspañaCornell University2022-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215812Almeida, Victor; Betancor, Jorge J.; Fariña, Juan C.; Quijano, Pablo; Rodríguez Mesa, Lourdes; Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups; Cornell University; Arxiv; 2022; 2-2022; 1-362331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2202.06136info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2202.06136info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:56Zoai:ri.conicet.gov.ar:11336/215812instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:56.393CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
title |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
spellingShingle |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups Almeida, Victor Littlewood paley functions Variation operator Nonsymmetric Ornstein-Uhlenbeck. |
title_short |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
title_full |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
title_fullStr |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
title_full_unstemmed |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
title_sort |
Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups |
dc.creator.none.fl_str_mv |
Almeida, Victor Betancor, Jorge J. Fariña, Juan C. Quijano, Pablo Rodríguez Mesa, Lourdes |
author |
Almeida, Victor |
author_facet |
Almeida, Victor Betancor, Jorge J. Fariña, Juan C. Quijano, Pablo Rodríguez Mesa, Lourdes |
author_role |
author |
author2 |
Betancor, Jorge J. Fariña, Juan C. Quijano, Pablo Rodríguez Mesa, Lourdes |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Littlewood paley functions Variation operator Nonsymmetric Ornstein-Uhlenbeck. |
topic |
Littlewood paley functions Variation operator Nonsymmetric Ornstein-Uhlenbeck. |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we establish Lp(Rd, γ∞)-boundedness properties for square functions involving time and spatial derivatives of Ornstein-Uhlenbeck semigroups. Here γ∞ denotes the invariant measure. In order to prove the strong type results for 1 < p < ∞ we use R-boundedness. The weak type (1,1) property is established by studying separately global and local operators defined for the square Littlewood-Paley functions. By the way we prove Lp(Rd, γ∞)-boundedness properties for maximal and variation operators for Ornstein-Uhlenbeck semigroups. Fil: Almeida, Victor. Universidad de la Laguna. Departamento de Analisis Matematico; España Fil: Betancor, Jorge J.. Universidad de la Laguna. Departamento de Analisis Matematico; España Fil: Fariña, Juan C.. Universidad de la Laguna. Departamento de Analisis Matematico; España Fil: Quijano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Rodríguez Mesa, Lourdes. Universidad de la Laguna. Departamento de Analisis Matematico; España |
description |
In this paper we establish Lp(Rd, γ∞)-boundedness properties for square functions involving time and spatial derivatives of Ornstein-Uhlenbeck semigroups. Here γ∞ denotes the invariant measure. In order to prove the strong type results for 1 < p < ∞ we use R-boundedness. The weak type (1,1) property is established by studying separately global and local operators defined for the square Littlewood-Paley functions. By the way we prove Lp(Rd, γ∞)-boundedness properties for maximal and variation operators for Ornstein-Uhlenbeck semigroups. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215812 Almeida, Victor; Betancor, Jorge J.; Fariña, Juan C.; Quijano, Pablo; Rodríguez Mesa, Lourdes; Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups; Cornell University; Arxiv; 2022; 2-2022; 1-36 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215812 |
identifier_str_mv |
Almeida, Victor; Betancor, Jorge J.; Fariña, Juan C.; Quijano, Pablo; Rodríguez Mesa, Lourdes; Littlewood-Paley functions associated with general Ornstein-Uhlenbeck semigroups; Cornell University; Arxiv; 2022; 2-2022; 1-36 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2202.06136 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2202.06136 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980494282588160 |
score |
12.993085 |