Doped polycrystalline silicon thin films deposited on glass from trichlorosilane

Autores
Benvenuto, Ariel Gastón; Buitrago, Roman Horacio; Schmidt, Javier Alejandro
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl3 as a precursor, H2 as a carrier and reaction gas, BBr3 as a p-type doping agent, and PCl3 as a n-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by  scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the p-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the n-doped samples lack columnar structure or preferential orientation. RS and  UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, p-type or n-type. Activation energies between 0.61 and 0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of Voc (507mV) and Jsc (29.6mAcm2) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications. 
Fil: Benvenuto, Ariel Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Buitrago, Roman Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Materia
Cvd
Polycrystalline Silicon
Solar Cells
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/4409

id CONICETDig_e97d8a2a31ecac013bff79db7b11474c
oai_identifier_str oai:ri.conicet.gov.ar:11336/4409
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Doped polycrystalline silicon thin films deposited on glass from trichlorosilaneBenvenuto, Ariel GastónBuitrago, Roman HoracioSchmidt, Javier AlejandroCvdPolycrystalline SiliconSolar Cellshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl3 as a precursor, H2 as a carrier and reaction gas, BBr3 as a p-type doping agent, and PCl3 as a n-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by  scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the p-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the n-doped samples lack columnar structure or preferential orientation. RS and  UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, p-type or n-type. Activation energies between 0.61 and 0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of Voc (507mV) and Jsc (29.6mAcm2) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications. Fil: Benvenuto, Ariel Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Buitrago, Roman Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaWiley2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4409Benvenuto, Ariel Gastón; Buitrago, Roman Horacio; Schmidt, Javier Alejandro; Doped polycrystalline silicon thin films deposited on glass from trichlorosilane; Wiley; Chemical Vapor Deposition; 21; 1-2-3; 1-2015; 54-620948-1907enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cvde.201407139/abstractinfo:eu-repo/semantics/altIdentifier/doi/DOI:10.1002/cvde.201407139info:eu-repo/semantics/altIdentifier/issn/0948-1907info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:35Zoai:ri.conicet.gov.ar:11336/4409instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:35.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
title Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
spellingShingle Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
Benvenuto, Ariel Gastón
Cvd
Polycrystalline Silicon
Solar Cells
title_short Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
title_full Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
title_fullStr Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
title_full_unstemmed Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
title_sort Doped polycrystalline silicon thin films deposited on glass from trichlorosilane
dc.creator.none.fl_str_mv Benvenuto, Ariel Gastón
Buitrago, Roman Horacio
Schmidt, Javier Alejandro
author Benvenuto, Ariel Gastón
author_facet Benvenuto, Ariel Gastón
Buitrago, Roman Horacio
Schmidt, Javier Alejandro
author_role author
author2 Buitrago, Roman Horacio
Schmidt, Javier Alejandro
author2_role author
author
dc.subject.none.fl_str_mv Cvd
Polycrystalline Silicon
Solar Cells
topic Cvd
Polycrystalline Silicon
Solar Cells
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl3 as a precursor, H2 as a carrier and reaction gas, BBr3 as a p-type doping agent, and PCl3 as a n-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by  scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the p-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the n-doped samples lack columnar structure or preferential orientation. RS and  UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, p-type or n-type. Activation energies between 0.61 and 0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of Voc (507mV) and Jsc (29.6mAcm2) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications. 
Fil: Benvenuto, Ariel Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Buitrago, Roman Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina
description Atmospheric pressure (AP) thermal CVD is used to deposit thin poly-Si films on glass substrates. Also produced are heterojunction solar cells carrying out the deposition on c-Si wafers. A batch-type hot-wall reactor, employing SiHCl3 as a precursor, H2 as a carrier and reaction gas, BBr3 as a p-type doping agent, and PCl3 as a n-type doping agent, is used. The films obtained are homogeneous and well-adhered to the substrate. Samples are structurally characterized by  scanning electron microscopy (SEM), atomic force microscopy (AFM), reflectance spectroscopy in the UV-vis region, X-ray diffraction (XRD), and Raman spectroscopy (RS). The electrical characterization includes conductivity measurements as a function of temperature, and Hall effect measurements. For the p-doped samples, XRD reveals a strong (220) preferential orientation of the films, while the n-doped samples lack columnar structure or preferential orientation. RS and  UV-reflectance confirm a high crystalline fraction. Dark conductivity measurements as a function of temperature show that the films can be grown intrinsic, p-type or n-type. Activation energies between 0.61 and 0 eV are obtained, with reasonable values for the carrier mobilities. For the solar cells, relatively high values of Voc (507mV) and Jsc (29.6mAcm2) are measured. In conclusion, these results demonstrate the feasibility of directly depositing doped poly-Si thin films on glass and c-Si substrates at intermediate temperatures, with interesting characteristics for photovoltaic applications. 
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/4409
Benvenuto, Ariel Gastón; Buitrago, Roman Horacio; Schmidt, Javier Alejandro; Doped polycrystalline silicon thin films deposited on glass from trichlorosilane; Wiley; Chemical Vapor Deposition; 21; 1-2-3; 1-2015; 54-62
0948-1907
url http://hdl.handle.net/11336/4409
identifier_str_mv Benvenuto, Ariel Gastón; Buitrago, Roman Horacio; Schmidt, Javier Alejandro; Doped polycrystalline silicon thin films deposited on glass from trichlorosilane; Wiley; Chemical Vapor Deposition; 21; 1-2-3; 1-2015; 54-62
0948-1907
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cvde.201407139/abstract
info:eu-repo/semantics/altIdentifier/doi/DOI:10.1002/cvde.201407139
info:eu-repo/semantics/altIdentifier/issn/0948-1907
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269411470213120
score 13.13397