Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
- Autores
- Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy.
Fil: Kind, R.. Delft University of Technology; Países Bajos
Fil: Van Swaaij, R. A. C. M. M. Delft University of Technology; Países Bajos
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Solntsev, S.. Delft University of Technology; Países Bajos
Fil: Zeman, M.. Delft University of Technology; Países Bajos - Materia
-
Amorphous Silicon
Dark Current Voltage Curves
Solar Cells
Thermal Ideality Factor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13002
Ver los metadatos del registro completo
id |
CONICETDig_e93fd28f72cb480eed9de484572ad703 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cellsKind, R.Van Swaaij, R. A. C. M. MRubinelli, Francisco AlbertoSolntsev, S.Zeman, M.Amorphous SiliconDark Current Voltage CurvesSolar CellsThermal Ideality Factorhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy.Fil: Kind, R.. Delft University of Technology; Países BajosFil: Van Swaaij, R. A. C. M. M. Delft University of Technology; Países BajosFil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Solntsev, S.. Delft University of Technology; Países BajosFil: Zeman, M.. Delft University of Technology; Países BajosAmerican Institute Of Physics2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13002Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.; Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells; American Institute Of Physics; Journal Of Applied Physics; 110; 11-2011; 104512-1045120021-8979enginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3662924info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3662924info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:03Zoai:ri.conicet.gov.ar:11336/13002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:03.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
title |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
spellingShingle |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells Kind, R. Amorphous Silicon Dark Current Voltage Curves Solar Cells Thermal Ideality Factor |
title_short |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
title_full |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
title_fullStr |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
title_full_unstemmed |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
title_sort |
Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells |
dc.creator.none.fl_str_mv |
Kind, R. Van Swaaij, R. A. C. M. M Rubinelli, Francisco Alberto Solntsev, S. Zeman, M. |
author |
Kind, R. |
author_facet |
Kind, R. Van Swaaij, R. A. C. M. M Rubinelli, Francisco Alberto Solntsev, S. Zeman, M. |
author_role |
author |
author2 |
Van Swaaij, R. A. C. M. M Rubinelli, Francisco Alberto Solntsev, S. Zeman, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Amorphous Silicon Dark Current Voltage Curves Solar Cells Thermal Ideality Factor |
topic |
Amorphous Silicon Dark Current Voltage Curves Solar Cells Thermal Ideality Factor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy. Fil: Kind, R.. Delft University of Technology; Países Bajos Fil: Van Swaaij, R. A. C. M. M. Delft University of Technology; Países Bajos Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Solntsev, S.. Delft University of Technology; Países Bajos Fil: Zeman, M.. Delft University of Technology; Países Bajos |
description |
The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13002 Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.; Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells; American Institute Of Physics; Journal Of Applied Physics; 110; 11-2011; 104512-104512 0021-8979 |
url |
http://hdl.handle.net/11336/13002 |
identifier_str_mv |
Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.; Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells; American Institute Of Physics; Journal Of Applied Physics; 110; 11-2011; 104512-104512 0021-8979 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3662924 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3662924 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613841614274560 |
score |
13.070432 |