Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells

Autores
Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy.
Fil: Kind, R.. Delft University of Technology; Países Bajos
Fil: Van Swaaij, R. A. C. M. M. Delft University of Technology; Países Bajos
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Solntsev, S.. Delft University of Technology; Países Bajos
Fil: Zeman, M.. Delft University of Technology; Países Bajos
Materia
Amorphous Silicon
Dark Current Voltage Curves
Solar Cells
Thermal Ideality Factor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13002

id CONICETDig_e93fd28f72cb480eed9de484572ad703
oai_identifier_str oai:ri.conicet.gov.ar:11336/13002
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cellsKind, R.Van Swaaij, R. A. C. M. MRubinelli, Francisco AlbertoSolntsev, S.Zeman, M.Amorphous SiliconDark Current Voltage CurvesSolar CellsThermal Ideality Factorhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy.Fil: Kind, R.. Delft University of Technology; Países BajosFil: Van Swaaij, R. A. C. M. M. Delft University of Technology; Países BajosFil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Solntsev, S.. Delft University of Technology; Países BajosFil: Zeman, M.. Delft University of Technology; Países BajosAmerican Institute Of Physics2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13002Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.; Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells; American Institute Of Physics; Journal Of Applied Physics; 110; 11-2011; 104512-1045120021-8979enginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3662924info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3662924info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:03Zoai:ri.conicet.gov.ar:11336/13002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:03.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
title Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
spellingShingle Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
Kind, R.
Amorphous Silicon
Dark Current Voltage Curves
Solar Cells
Thermal Ideality Factor
title_short Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
title_full Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
title_fullStr Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
title_full_unstemmed Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
title_sort Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells
dc.creator.none.fl_str_mv Kind, R.
Van Swaaij, R. A. C. M. M
Rubinelli, Francisco Alberto
Solntsev, S.
Zeman, M.
author Kind, R.
author_facet Kind, R.
Van Swaaij, R. A. C. M. M
Rubinelli, Francisco Alberto
Solntsev, S.
Zeman, M.
author_role author
author2 Van Swaaij, R. A. C. M. M
Rubinelli, Francisco Alberto
Solntsev, S.
Zeman, M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Amorphous Silicon
Dark Current Voltage Curves
Solar Cells
Thermal Ideality Factor
topic Amorphous Silicon
Dark Current Voltage Curves
Solar Cells
Thermal Ideality Factor
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy.
Fil: Kind, R.. Delft University of Technology; Países Bajos
Fil: Van Swaaij, R. A. C. M. M. Delft University of Technology; Países Bajos
Fil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Solntsev, S.. Delft University of Technology; Países Bajos
Fil: Zeman, M.. Delft University of Technology; Países Bajos
description The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate depends on the concentration of active recombination centers and the recombination efficacy of each of these centers. The first factor causes the ideality factor of the devices to be non-integer and to vary with voltage. The temperature dependence of the dark current can be expressed by its activation energy. For microcrystalline silicon solar cells the activation energy varies with voltage with a so-called thermal ideality factor of 2. This value was derived for devices with a spatially uniform defect distribution and reflects the recombination efficacy. Here we present results of a thickness series of a-Si:H p-i-n solar cells. We have matched the experimental curves with computer simulations, and show that the voltage-dependent ideality factor curve can be used to extract information on the cross sections for electron and hole capture. Also, the activation energy is used as a measure for the mobility gap, resulting in a mobility gap for a-Si:H of 1.69 eV. We find a thermal ideality factor close to 2 for all samples. This is explained with a theoretical derivation, followed by a comparison between the internal electric field strength and the spatial variation of the defect density in the intrinsic layer. The thermal ideality factor is shown to be insensitive to the defect distribution and the recombination profile in the device. It is, therefore, an appropriate parameter to characterize a-Si:H p-i-n devices, providing direct insight on the recombination efficacy.
publishDate 2011
dc.date.none.fl_str_mv 2011-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13002
Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.; Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells; American Institute Of Physics; Journal Of Applied Physics; 110; 11-2011; 104512-104512
0021-8979
url http://hdl.handle.net/11336/13002
identifier_str_mv Kind, R.; Van Swaaij, R. A. C. M. M; Rubinelli, Francisco Alberto; Solntsev, S.; Zeman, M.; Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells; American Institute Of Physics; Journal Of Applied Physics; 110; 11-2011; 104512-104512
0021-8979
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3662924
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3662924
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613841614274560
score 13.070432