Optimal frame completions with prescribed norms for majorization

Autores
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
Frame Completions
Majorization
Convex Potentials
Schur-Horn Theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33464

id CONICETDig_da08b8ee85e76ff2ce056d7deba061cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/33464
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal frame completions with prescribed norms for majorizationMassey, Pedro GustavoRuiz, Mariano AndresStojanoff, DemetrioFrame CompletionsMajorizationConvex PotentialsSchur-Horn Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33464Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions with prescribed norms for majorization; Springer; Journal Of Fourier Analysis And Applications; 20; 5; 10-2014; 1111-11401069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-014-9347-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-014-9347-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:08Zoai:ri.conicet.gov.ar:11336/33464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:08.911CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal frame completions with prescribed norms for majorization
title Optimal frame completions with prescribed norms for majorization
spellingShingle Optimal frame completions with prescribed norms for majorization
Massey, Pedro Gustavo
Frame Completions
Majorization
Convex Potentials
Schur-Horn Theorem
title_short Optimal frame completions with prescribed norms for majorization
title_full Optimal frame completions with prescribed norms for majorization
title_fullStr Optimal frame completions with prescribed norms for majorization
title_full_unstemmed Optimal frame completions with prescribed norms for majorization
title_sort Optimal frame completions with prescribed norms for majorization
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
Ruiz, Mariano Andres
Stojanoff, Demetrio
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
Ruiz, Mariano Andres
Stojanoff, Demetrio
author_role author
author2 Ruiz, Mariano Andres
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv Frame Completions
Majorization
Convex Potentials
Schur-Horn Theorem
topic Frame Completions
Majorization
Convex Potentials
Schur-Horn Theorem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33464
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions with prescribed norms for majorization; Springer; Journal Of Fourier Analysis And Applications; 20; 5; 10-2014; 1111-1140
1069-5869
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33464
identifier_str_mv Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions with prescribed norms for majorization; Springer; Journal Of Fourier Analysis And Applications; 20; 5; 10-2014; 1111-1140
1069-5869
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-014-9347-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-014-9347-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613927502086144
score 13.070432