Optimal frame completions with prescribed norms for majorization
- Autores
- Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
Frame Completions
Majorization
Convex Potentials
Schur-Horn Theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33464
Ver los metadatos del registro completo
id |
CONICETDig_da08b8ee85e76ff2ce056d7deba061cb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33464 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal frame completions with prescribed norms for majorizationMassey, Pedro GustavoRuiz, Mariano AndresStojanoff, DemetrioFrame CompletionsMajorizationConvex PotentialsSchur-Horn Theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem.Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33464Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions with prescribed norms for majorization; Springer; Journal Of Fourier Analysis And Applications; 20; 5; 10-2014; 1111-11401069-5869CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-014-9347-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-014-9347-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:08Zoai:ri.conicet.gov.ar:11336/33464instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:08.911CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal frame completions with prescribed norms for majorization |
title |
Optimal frame completions with prescribed norms for majorization |
spellingShingle |
Optimal frame completions with prescribed norms for majorization Massey, Pedro Gustavo Frame Completions Majorization Convex Potentials Schur-Horn Theorem |
title_short |
Optimal frame completions with prescribed norms for majorization |
title_full |
Optimal frame completions with prescribed norms for majorization |
title_fullStr |
Optimal frame completions with prescribed norms for majorization |
title_full_unstemmed |
Optimal frame completions with prescribed norms for majorization |
title_sort |
Optimal frame completions with prescribed norms for majorization |
dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author |
Massey, Pedro Gustavo |
author_facet |
Massey, Pedro Gustavo Ruiz, Mariano Andres Stojanoff, Demetrio |
author_role |
author |
author2 |
Ruiz, Mariano Andres Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Frame Completions Majorization Convex Potentials Schur-Horn Theorem |
topic |
Frame Completions Majorization Convex Potentials Schur-Horn Theorem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem. Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Given a finite sequence of vectors F0 in a d-dimensional complex Hilbert space H we characterize in a complete and explicit way the optimal completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to majorization (of the eigenvalues of the frame operators of the completed sequences). Indeed, we construct (in terms of a fast algorithm) a vector?that depends on the eigenvalues of the frame operator of the initial sequence F0 and the sequence of prescribed norms?that is a minimum for majorization among all eigenvalues of frame operators of completions with prescribed norms. Then, using the eigenspaces of the frame operator of the initial sequence F0 we describe the frame operators of all optimal completions for majorization. Hence, the concrete optimal completions with prescribed norms can be obtained using recent algorithmic constructions related with the Schur-Horn theorem. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33464 Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions with prescribed norms for majorization; Springer; Journal Of Fourier Analysis And Applications; 20; 5; 10-2014; 1111-1140 1069-5869 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33464 |
identifier_str_mv |
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions with prescribed norms for majorization; Springer; Journal Of Fourier Analysis And Applications; 20; 5; 10-2014; 1111-1140 1069-5869 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00041-014-9347-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-014-9347-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613927502086144 |
score |
13.070432 |