Optimal dual frames and frame completions for majorization
- Autores
- Stojanoff, Demetrio; Ruiz, M; Massey, Pedro Gustavo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we consider two problems in frame theory. On the one hand, given a set of vectors F we describe the spectral and geometrical structure of optimal completions of F by a finite family of vectors with prescribed norms, where optimality is measured with respect to majorization. In particular, these optimal completions are the minimizers of a family of convex functionals that include the mean square error and the Benedetto?Fickusʼ frame potential. On the other hand, given a fixed frame F we describe explicitly the spectral and geometrical structure of optimal frames G that are in duality with F and such that the Frobenius norms of their analysis operators is bounded from below by a fixed constant. In this case, optimality is measured with respect to submajorization of the frames operators. Our approach relies on the description of the spectral and geometrical structure of matrices that minimize submajorization on sets that are naturally associated with the problems above.
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Ruiz, M. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina - Materia
-
Dual Frames
Frame Completions
Majorization
Schur-Horn - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3278
Ver los metadatos del registro completo
id |
CONICETDig_826ecf23696144a83af8b3d4c0a08df5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3278 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal dual frames and frame completions for majorizationStojanoff, DemetrioRuiz, MMassey, Pedro GustavoDual FramesFrame CompletionsMajorizationSchur-Hornhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we consider two problems in frame theory. On the one hand, given a set of vectors F we describe the spectral and geometrical structure of optimal completions of F by a finite family of vectors with prescribed norms, where optimality is measured with respect to majorization. In particular, these optimal completions are the minimizers of a family of convex functionals that include the mean square error and the Benedetto?Fickusʼ frame potential. On the other hand, given a fixed frame F we describe explicitly the spectral and geometrical structure of optimal frames G that are in duality with F and such that the Frobenius norms of their analysis operators is bounded from below by a fixed constant. In this case, optimality is measured with respect to submajorization of the frames operators. Our approach relies on the description of the spectral and geometrical structure of matrices that minimize submajorization on sets that are naturally associated with the problems above.Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Ruiz, M. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaAcademic Press Inc Elsevier Science2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3278Stojanoff, Demetrio; Ruiz, M; Massey, Pedro Gustavo; Optimal dual frames and frame completions for majorization; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 34; 2; 3-2013; 201-2231063-5203enginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/pdf/1108.4412v3.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:53Zoai:ri.conicet.gov.ar:11336/3278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:53.595CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal dual frames and frame completions for majorization |
title |
Optimal dual frames and frame completions for majorization |
spellingShingle |
Optimal dual frames and frame completions for majorization Stojanoff, Demetrio Dual Frames Frame Completions Majorization Schur-Horn |
title_short |
Optimal dual frames and frame completions for majorization |
title_full |
Optimal dual frames and frame completions for majorization |
title_fullStr |
Optimal dual frames and frame completions for majorization |
title_full_unstemmed |
Optimal dual frames and frame completions for majorization |
title_sort |
Optimal dual frames and frame completions for majorization |
dc.creator.none.fl_str_mv |
Stojanoff, Demetrio Ruiz, M Massey, Pedro Gustavo |
author |
Stojanoff, Demetrio |
author_facet |
Stojanoff, Demetrio Ruiz, M Massey, Pedro Gustavo |
author_role |
author |
author2 |
Ruiz, M Massey, Pedro Gustavo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dual Frames Frame Completions Majorization Schur-Horn |
topic |
Dual Frames Frame Completions Majorization Schur-Horn |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we consider two problems in frame theory. On the one hand, given a set of vectors F we describe the spectral and geometrical structure of optimal completions of F by a finite family of vectors with prescribed norms, where optimality is measured with respect to majorization. In particular, these optimal completions are the minimizers of a family of convex functionals that include the mean square error and the Benedetto?Fickusʼ frame potential. On the other hand, given a fixed frame F we describe explicitly the spectral and geometrical structure of optimal frames G that are in duality with F and such that the Frobenius norms of their analysis operators is bounded from below by a fixed constant. In this case, optimality is measured with respect to submajorization of the frames operators. Our approach relies on the description of the spectral and geometrical structure of matrices that minimize submajorization on sets that are naturally associated with the problems above. Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Ruiz, M. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina |
description |
In this paper we consider two problems in frame theory. On the one hand, given a set of vectors F we describe the spectral and geometrical structure of optimal completions of F by a finite family of vectors with prescribed norms, where optimality is measured with respect to majorization. In particular, these optimal completions are the minimizers of a family of convex functionals that include the mean square error and the Benedetto?Fickusʼ frame potential. On the other hand, given a fixed frame F we describe explicitly the spectral and geometrical structure of optimal frames G that are in duality with F and such that the Frobenius norms of their analysis operators is bounded from below by a fixed constant. In this case, optimality is measured with respect to submajorization of the frames operators. Our approach relies on the description of the spectral and geometrical structure of matrices that minimize submajorization on sets that are naturally associated with the problems above. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3278 Stojanoff, Demetrio; Ruiz, M; Massey, Pedro Gustavo; Optimal dual frames and frame completions for majorization; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 34; 2; 3-2013; 201-223 1063-5203 |
url |
http://hdl.handle.net/11336/3278 |
identifier_str_mv |
Stojanoff, Demetrio; Ruiz, M; Massey, Pedro Gustavo; Optimal dual frames and frame completions for majorization; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 34; 2; 3-2013; 201-223 1063-5203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/pdf/1108.4412v3.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613982565957632 |
score |
13.070432 |