Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow
- Autores
- Fernández Culma, Edison Alberto
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to study self-similar solutions to the symplectic curvature flow on 6-dimensional nilmanifolds. For this purpose, we focus our attention on the family of symplectic two- and three-step nilpotent Lie algebras admitting a minimal compatible metric and give a complete classification of these algebras together with their respective metric. Such a classification is given by using our generalization of Nikolayevsky’s nice basis criterion, which, for the convenience of the reader, will be repeated here in the context of canonical compatible metrics for geometric structures on nilmanifolds. By computing the Chern–Ricci operator (Formula presented.) in each case, we show that the above distinguished metrics define a soliton almost Kähler structure. Many illustrative examples are carefully developed.
Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Convexity Of the Moment Map
Geometric Structures on Nilmanifolds
Nice Basis
Nilpotent Lie Algebras
Self-Similar Solutions
Symplectic Curvature Flow - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51389
Ver los metadatos del registro completo
id |
CONICETDig_6e88b5f2d358f0e65c83c35a9c477aa4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51389 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature FlowFernández Culma, Edison AlbertoConvexity Of the Moment MapGeometric Structures on NilmanifoldsNice BasisNilpotent Lie AlgebrasSelf-Similar SolutionsSymplectic Curvature Flowhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to study self-similar solutions to the symplectic curvature flow on 6-dimensional nilmanifolds. For this purpose, we focus our attention on the family of symplectic two- and three-step nilpotent Lie algebras admitting a minimal compatible metric and give a complete classification of these algebras together with their respective metric. Such a classification is given by using our generalization of Nikolayevsky’s nice basis criterion, which, for the convenience of the reader, will be repeated here in the context of canonical compatible metrics for geometric structures on nilmanifolds. By computing the Chern–Ricci operator (Formula presented.) in each case, we show that the above distinguished metrics define a soliton almost Kähler structure. Many illustrative examples are carefully developed.Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/51389Fernández Culma, Edison Alberto; Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow; Springer; The Journal Of Geometric Analysis; 25; 4; 10-2015; 2736-27581050-6926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-014-9534-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-014-9534-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:39Zoai:ri.conicet.gov.ar:11336/51389instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:40.189CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
title |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
spellingShingle |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow Fernández Culma, Edison Alberto Convexity Of the Moment Map Geometric Structures on Nilmanifolds Nice Basis Nilpotent Lie Algebras Self-Similar Solutions Symplectic Curvature Flow |
title_short |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
title_full |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
title_fullStr |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
title_full_unstemmed |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
title_sort |
Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow |
dc.creator.none.fl_str_mv |
Fernández Culma, Edison Alberto |
author |
Fernández Culma, Edison Alberto |
author_facet |
Fernández Culma, Edison Alberto |
author_role |
author |
dc.subject.none.fl_str_mv |
Convexity Of the Moment Map Geometric Structures on Nilmanifolds Nice Basis Nilpotent Lie Algebras Self-Similar Solutions Symplectic Curvature Flow |
topic |
Convexity Of the Moment Map Geometric Structures on Nilmanifolds Nice Basis Nilpotent Lie Algebras Self-Similar Solutions Symplectic Curvature Flow |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this paper is to study self-similar solutions to the symplectic curvature flow on 6-dimensional nilmanifolds. For this purpose, we focus our attention on the family of symplectic two- and three-step nilpotent Lie algebras admitting a minimal compatible metric and give a complete classification of these algebras together with their respective metric. Such a classification is given by using our generalization of Nikolayevsky’s nice basis criterion, which, for the convenience of the reader, will be repeated here in the context of canonical compatible metrics for geometric structures on nilmanifolds. By computing the Chern–Ricci operator (Formula presented.) in each case, we show that the above distinguished metrics define a soliton almost Kähler structure. Many illustrative examples are carefully developed. Fil: Fernández Culma, Edison Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
The aim of this paper is to study self-similar solutions to the symplectic curvature flow on 6-dimensional nilmanifolds. For this purpose, we focus our attention on the family of symplectic two- and three-step nilpotent Lie algebras admitting a minimal compatible metric and give a complete classification of these algebras together with their respective metric. Such a classification is given by using our generalization of Nikolayevsky’s nice basis criterion, which, for the convenience of the reader, will be repeated here in the context of canonical compatible metrics for geometric structures on nilmanifolds. By computing the Chern–Ricci operator (Formula presented.) in each case, we show that the above distinguished metrics define a soliton almost Kähler structure. Many illustrative examples are carefully developed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51389 Fernández Culma, Edison Alberto; Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow; Springer; The Journal Of Geometric Analysis; 25; 4; 10-2015; 2736-2758 1050-6926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51389 |
identifier_str_mv |
Fernández Culma, Edison Alberto; Soliton Almost Kähler Structures on 6-Dimensional Nilmanifolds for the Symplectic Curvature Flow; Springer; The Journal Of Geometric Analysis; 25; 4; 10-2015; 2736-2758 1050-6926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-014-9534-x info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12220-014-9534-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614422577807360 |
score |
13.070432 |