Nilradicals of parabolic subalgebras admitting symplectic structures
- Autores
- Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it.
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: del Barco, Viviana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
Nilpotent Lie Algebras
Nilradicals of Parabolic Subalgebras
Symplectic Structures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52647
Ver los metadatos del registro completo
id |
CONICETDig_8b293a8dc197008065e461fa41b4649a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52647 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nilradicals of parabolic subalgebras admitting symplectic structuresCagliero, Leandro Robertodel Barco, Viviana JorgelinaNilpotent Lie AlgebrasNilradicals of Parabolic SubalgebrasSymplectic Structureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it.Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: del Barco, Viviana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaElsevier Science2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52647Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina; Nilradicals of parabolic subalgebras admitting symplectic structures; Elsevier Science; Differential Geometry and its Applications; 46; 6-2016; 1-130926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2016.01.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224516300092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:46Zoai:ri.conicet.gov.ar:11336/52647instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:47.18CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nilradicals of parabolic subalgebras admitting symplectic structures |
title |
Nilradicals of parabolic subalgebras admitting symplectic structures |
spellingShingle |
Nilradicals of parabolic subalgebras admitting symplectic structures Cagliero, Leandro Roberto Nilpotent Lie Algebras Nilradicals of Parabolic Subalgebras Symplectic Structures |
title_short |
Nilradicals of parabolic subalgebras admitting symplectic structures |
title_full |
Nilradicals of parabolic subalgebras admitting symplectic structures |
title_fullStr |
Nilradicals of parabolic subalgebras admitting symplectic structures |
title_full_unstemmed |
Nilradicals of parabolic subalgebras admitting symplectic structures |
title_sort |
Nilradicals of parabolic subalgebras admitting symplectic structures |
dc.creator.none.fl_str_mv |
Cagliero, Leandro Roberto del Barco, Viviana Jorgelina |
author |
Cagliero, Leandro Roberto |
author_facet |
Cagliero, Leandro Roberto del Barco, Viviana Jorgelina |
author_role |
author |
author2 |
del Barco, Viviana Jorgelina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Nilpotent Lie Algebras Nilradicals of Parabolic Subalgebras Symplectic Structures |
topic |
Nilpotent Lie Algebras Nilradicals of Parabolic Subalgebras Symplectic Structures |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it. Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: del Barco, Viviana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52647 Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina; Nilradicals of parabolic subalgebras admitting symplectic structures; Elsevier Science; Differential Geometry and its Applications; 46; 6-2016; 1-13 0926-2245 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52647 |
identifier_str_mv |
Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina; Nilradicals of parabolic subalgebras admitting symplectic structures; Elsevier Science; Differential Geometry and its Applications; 46; 6-2016; 1-13 0926-2245 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2016.01.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224516300092 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613002012131328 |
score |
13.070432 |