Nilradicals of parabolic subalgebras admitting symplectic structures

Autores
Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it.
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: del Barco, Viviana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Materia
Nilpotent Lie Algebras
Nilradicals of Parabolic Subalgebras
Symplectic Structures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52647

id CONICETDig_8b293a8dc197008065e461fa41b4649a
oai_identifier_str oai:ri.conicet.gov.ar:11336/52647
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nilradicals of parabolic subalgebras admitting symplectic structuresCagliero, Leandro Robertodel Barco, Viviana JorgelinaNilpotent Lie AlgebrasNilradicals of Parabolic SubalgebrasSymplectic Structureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it.Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: del Barco, Viviana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaElsevier Science2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52647Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina; Nilradicals of parabolic subalgebras admitting symplectic structures; Elsevier Science; Differential Geometry and its Applications; 46; 6-2016; 1-130926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2016.01.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224516300092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:46Zoai:ri.conicet.gov.ar:11336/52647instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:47.18CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nilradicals of parabolic subalgebras admitting symplectic structures
title Nilradicals of parabolic subalgebras admitting symplectic structures
spellingShingle Nilradicals of parabolic subalgebras admitting symplectic structures
Cagliero, Leandro Roberto
Nilpotent Lie Algebras
Nilradicals of Parabolic Subalgebras
Symplectic Structures
title_short Nilradicals of parabolic subalgebras admitting symplectic structures
title_full Nilradicals of parabolic subalgebras admitting symplectic structures
title_fullStr Nilradicals of parabolic subalgebras admitting symplectic structures
title_full_unstemmed Nilradicals of parabolic subalgebras admitting symplectic structures
title_sort Nilradicals of parabolic subalgebras admitting symplectic structures
dc.creator.none.fl_str_mv Cagliero, Leandro Roberto
del Barco, Viviana Jorgelina
author Cagliero, Leandro Roberto
author_facet Cagliero, Leandro Roberto
del Barco, Viviana Jorgelina
author_role author
author2 del Barco, Viviana Jorgelina
author2_role author
dc.subject.none.fl_str_mv Nilpotent Lie Algebras
Nilradicals of Parabolic Subalgebras
Symplectic Structures
topic Nilpotent Lie Algebras
Nilradicals of Parabolic Subalgebras
Symplectic Structures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it.
Fil: Cagliero, Leandro Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: del Barco, Viviana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
description In this paper we describe all the nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic structures.The main tools used to obtain this list are Kostant's description of the highest weight vectors (hwv) of the cohomology of these nilradicals and some necessary conditions obtained for the g-hwv's of H2(n) for a finite dimensional real symplectic nilpotent Lie algebra n with a reductive Lie subalgebra of derivations g acting on it.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52647
Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina; Nilradicals of parabolic subalgebras admitting symplectic structures; Elsevier Science; Differential Geometry and its Applications; 46; 6-2016; 1-13
0926-2245
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52647
identifier_str_mv Cagliero, Leandro Roberto; del Barco, Viviana Jorgelina; Nilradicals of parabolic subalgebras admitting symplectic structures; Elsevier Science; Differential Geometry and its Applications; 46; 6-2016; 1-13
0926-2245
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2016.01.006
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224516300092
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613002012131328
score 13.070432