Sectional curvature and commutation of pairs of selfadjoint operators
- Autores
- Andruchow, Esteban; Recht, Lázaro
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
POSITIVE OPERATOR
SELFADJOINT OPERATOR
SECTIONAL CURVATURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109699
Ver los metadatos del registro completo
| id |
CONICETDig_cc99e3c1d8c4a8feeaa05e6899de9bdd |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109699 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Sectional curvature and commutation of pairs of selfadjoint operatorsAndruchow, EstebanRecht, LázaroPOSITIVE OPERATORSELFADJOINT OPERATORSECTIONAL CURVATUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaTheta Foundation2006-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109699Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-2380379-40241841-7744CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2006-055-002/2006-055-002-001.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:46:03Zoai:ri.conicet.gov.ar:11336/109699instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:46:03.317CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Sectional curvature and commutation of pairs of selfadjoint operators |
| title |
Sectional curvature and commutation of pairs of selfadjoint operators |
| spellingShingle |
Sectional curvature and commutation of pairs of selfadjoint operators Andruchow, Esteban POSITIVE OPERATOR SELFADJOINT OPERATOR SECTIONAL CURVATURE |
| title_short |
Sectional curvature and commutation of pairs of selfadjoint operators |
| title_full |
Sectional curvature and commutation of pairs of selfadjoint operators |
| title_fullStr |
Sectional curvature and commutation of pairs of selfadjoint operators |
| title_full_unstemmed |
Sectional curvature and commutation of pairs of selfadjoint operators |
| title_sort |
Sectional curvature and commutation of pairs of selfadjoint operators |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Recht, Lázaro |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Recht, Lázaro |
| author_role |
author |
| author2 |
Recht, Lázaro |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
POSITIVE OPERATOR SELFADJOINT OPERATOR SECTIONAL CURVATURE |
| topic |
POSITIVE OPERATOR SELFADJOINT OPERATOR SECTIONAL CURVATURE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109699 Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-238 0379-4024 1841-7744 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/109699 |
| identifier_str_mv |
Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-238 0379-4024 1841-7744 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2006-055-002/2006-055-002-001.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Theta Foundation |
| publisher.none.fl_str_mv |
Theta Foundation |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872502099017728 |
| score |
13.011256 |