Sectional curvature and commutation of pairs of selfadjoint operators
- Autores
 - Andruchow, Esteban; Recht, Lázaro
 - Año de publicación
 - 2006
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
 - 
            
        POSITIVE OPERATOR
SELFADJOINT OPERATOR
SECTIONAL CURVATURE - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/109699
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_cc99e3c1d8c4a8feeaa05e6899de9bdd | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/109699 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Sectional curvature and commutation of pairs of selfadjoint operatorsAndruchow, EstebanRecht, LázaroPOSITIVE OPERATORSELFADJOINT OPERATORSECTIONAL CURVATUREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaTheta Foundation2006-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109699Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-2380379-40241841-7744CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2006-055-002/2006-055-002-001.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:42:05Zoai:ri.conicet.gov.ar:11336/109699instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:42:06.003CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| title | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| spellingShingle | 
                                Sectional curvature and commutation of pairs of selfadjoint operators Andruchow, Esteban POSITIVE OPERATOR SELFADJOINT OPERATOR SECTIONAL CURVATURE  | 
      
| title_short | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| title_full | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| title_fullStr | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| title_full_unstemmed | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| title_sort | 
                                Sectional curvature and commutation of pairs of selfadjoint operators | 
      
| dc.creator.none.fl_str_mv | 
                                Andruchow, Esteban Recht, Lázaro  | 
      
| author | 
                                Andruchow, Esteban | 
      
| author_facet | 
                                Andruchow, Esteban Recht, Lázaro  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Recht, Lázaro | 
      
| author2_role | 
                                author | 
      
| dc.subject.none.fl_str_mv | 
                                POSITIVE OPERATOR SELFADJOINT OPERATOR SECTIONAL CURVATURE  | 
      
| topic | 
                                POSITIVE OPERATOR SELFADJOINT OPERATOR SECTIONAL CURVATURE  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  | 
      
| description | 
                                The space G^+ of postive invertible operators of a C*-algebra A, with the appropriate Finsler metric, behaves like a (non positively curved)symmetric space. Among the characteristic properties of such spaces, one has that two selfadjoint elements x, y ∈ A (regarded as tangent vectors at a ∈ G^+)verify that ∥x − y∥a ≤ d(exp_a(x), exp_a(y)). In this paper we investigate the ocurrence of the equality ∥x − y∥a = d(exp_a(x), exp_a(y)). If A has a trace, and the trace is used to measure tangent vectors then, as in the finite dimensional classical setting, this equality is equivalent to the fact that x and y commute. In arbitrary *-algebras, when the usual C*-norm is used, the equality is equivalent to a weaker condition. We introduce in G^+ an analogous of the sectional curvature for pairsof selfadjoint operators, and study the vanishing of this invariant. | 
      
| publishDate | 
                                2006 | 
      
| dc.date.none.fl_str_mv | 
                                2006-04 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/109699 Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-238 0379-4024 1841-7744 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/109699 | 
      
| identifier_str_mv | 
                                Andruchow, Esteban; Recht, Lázaro; Sectional curvature and commutation of pairs of selfadjoint operators; Theta Foundation; Journal Of Operator Theory; 55; 2; 4-2006; 225-238 0379-4024 1841-7744 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/https://www.theta.ro/jot/archive/2006-055-002/2006-055-002-001.html | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Theta Foundation | 
      
| publisher.none.fl_str_mv | 
                                Theta Foundation | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426330427129856 | 
      
| score | 
                                13.10058 |