Further norm and numerical radii inequalities for operators involving a positive operator

Autores
Altwaijry, Najla; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The article examines inequalities for norms and numerical radii of bounded linear operators on complex Hilbert spaces. It focuses on scenarios where three operators are involved, with one being positive, and investigates their sums or products. Some of our findings extend existing inequalities established in the literature.
Fil: Altwaijry, Najla. King Saud University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;
Fil: Dragomir, Silvestru Sever. University of Victoria; Canadá. Royal Melbourne Institute Of Technology.; Australia
Fil: Feki, Kais. University Of Sfax; Túnez
Materia
Positive operator
Hilbert space
Numerical radius
Operator norm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/276124

id CONICETDig_d5419cd4a14116963433cc8a4885d03f
oai_identifier_str oai:ri.conicet.gov.ar:11336/276124
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Further norm and numerical radii inequalities for operators involving a positive operatorAltwaijry, NajlaConde, Cristian MarceloDragomir, Silvestru SeverFeki, KaisPositive operatorHilbert spaceNumerical radiusOperator normhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The article examines inequalities for norms and numerical radii of bounded linear operators on complex Hilbert spaces. It focuses on scenarios where three operators are involved, with one being positive, and investigates their sums or products. Some of our findings extend existing inequalities established in the literature.Fil: Altwaijry, Najla. King Saud University; Arabia SauditaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;Fil: Dragomir, Silvestru Sever. University of Victoria; Canadá. Royal Melbourne Institute Of Technology.; AustraliaFil: Feki, Kais. University Of Sfax; TúnezAIMS Press2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276124Altwaijry, Najla; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Further norm and numerical radii inequalities for operators involving a positive operator; AIMS Press; AIMS Mathematics; 10; 2; 1-2025; 2684-26962473-6988CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/math.2025126info:eu-repo/semantics/altIdentifier/doi/10.3934/math.2025126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:31:48Zoai:ri.conicet.gov.ar:11336/276124instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:31:48.471CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Further norm and numerical radii inequalities for operators involving a positive operator
title Further norm and numerical radii inequalities for operators involving a positive operator
spellingShingle Further norm and numerical radii inequalities for operators involving a positive operator
Altwaijry, Najla
Positive operator
Hilbert space
Numerical radius
Operator norm
title_short Further norm and numerical radii inequalities for operators involving a positive operator
title_full Further norm and numerical radii inequalities for operators involving a positive operator
title_fullStr Further norm and numerical radii inequalities for operators involving a positive operator
title_full_unstemmed Further norm and numerical radii inequalities for operators involving a positive operator
title_sort Further norm and numerical radii inequalities for operators involving a positive operator
dc.creator.none.fl_str_mv Altwaijry, Najla
Conde, Cristian Marcelo
Dragomir, Silvestru Sever
Feki, Kais
author Altwaijry, Najla
author_facet Altwaijry, Najla
Conde, Cristian Marcelo
Dragomir, Silvestru Sever
Feki, Kais
author_role author
author2 Conde, Cristian Marcelo
Dragomir, Silvestru Sever
Feki, Kais
author2_role author
author
author
dc.subject.none.fl_str_mv Positive operator
Hilbert space
Numerical radius
Operator norm
topic Positive operator
Hilbert space
Numerical radius
Operator norm
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The article examines inequalities for norms and numerical radii of bounded linear operators on complex Hilbert spaces. It focuses on scenarios where three operators are involved, with one being positive, and investigates their sums or products. Some of our findings extend existing inequalities established in the literature.
Fil: Altwaijry, Najla. King Saud University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;
Fil: Dragomir, Silvestru Sever. University of Victoria; Canadá. Royal Melbourne Institute Of Technology.; Australia
Fil: Feki, Kais. University Of Sfax; Túnez
description The article examines inequalities for norms and numerical radii of bounded linear operators on complex Hilbert spaces. It focuses on scenarios where three operators are involved, with one being positive, and investigates their sums or products. Some of our findings extend existing inequalities established in the literature.
publishDate 2025
dc.date.none.fl_str_mv 2025-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/276124
Altwaijry, Najla; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Further norm and numerical radii inequalities for operators involving a positive operator; AIMS Press; AIMS Mathematics; 10; 2; 1-2025; 2684-2696
2473-6988
CONICET Digital
CONICET
url http://hdl.handle.net/11336/276124
identifier_str_mv Altwaijry, Najla; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Further norm and numerical radii inequalities for operators involving a positive operator; AIMS Press; AIMS Mathematics; 10; 2; 1-2025; 2684-2696
2473-6988
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/math.2025126
info:eu-repo/semantics/altIdentifier/doi/10.3934/math.2025126
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv AIMS Press
publisher.none.fl_str_mv AIMS Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850505696538263552
score 13.275514