Han’s conjecture and hochschild homology for null-square projective algebras

Autores
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H .
Fil: Cibils, Claude. No especifíca;
Fil: Redondo, Maria Julia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
GLOBAL DIMENSION
HAN’S CONJECTURE
HOCHSCHILD HOMOLOGY
SMOOTH
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/159562

id CONICETDig_e7ab45db8573a2de5b6857f09a0b04a3
oai_identifier_str oai:ri.conicet.gov.ar:11336/159562
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Han’s conjecture and hochschild homology for null-square projective algebrasCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorGLOBAL DIMENSIONHAN’S CONJECTUREHOCHSCHILD HOMOLOGYSMOOTHhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H .Fil: Cibils, Claude. No especifíca;Fil: Redondo, Maria Julia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaIndiana University2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159562Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Han’s conjecture and hochschild homology for null-square projective algebras; Indiana University; Indiana University Mathematics Journal; 70; 2; 5-2021; 639-6680022-2518CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1512/iumj.2021.70.8402info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=8402&year=2021&volume=70info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:49Zoai:ri.conicet.gov.ar:11336/159562instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:49.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Han’s conjecture and hochschild homology for null-square projective algebras
title Han’s conjecture and hochschild homology for null-square projective algebras
spellingShingle Han’s conjecture and hochschild homology for null-square projective algebras
Cibils, Claude
GLOBAL DIMENSION
HAN’S CONJECTURE
HOCHSCHILD HOMOLOGY
SMOOTH
title_short Han’s conjecture and hochschild homology for null-square projective algebras
title_full Han’s conjecture and hochschild homology for null-square projective algebras
title_fullStr Han’s conjecture and hochschild homology for null-square projective algebras
title_full_unstemmed Han’s conjecture and hochschild homology for null-square projective algebras
title_sort Han’s conjecture and hochschild homology for null-square projective algebras
dc.creator.none.fl_str_mv Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author Cibils, Claude
author_facet Cibils, Claude
Redondo, Maria Julia
Solotar, Andrea Leonor
author_role author
author2 Redondo, Maria Julia
Solotar, Andrea Leonor
author2_role author
author
dc.subject.none.fl_str_mv GLOBAL DIMENSION
HAN’S CONJECTURE
HOCHSCHILD HOMOLOGY
SMOOTH
topic GLOBAL DIMENSION
HAN’S CONJECTURE
HOCHSCHILD HOMOLOGY
SMOOTH
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H .
Fil: Cibils, Claude. No especifíca;
Fil: Redondo, Maria Julia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H .
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/159562
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Han’s conjecture and hochschild homology for null-square projective algebras; Indiana University; Indiana University Mathematics Journal; 70; 2; 5-2021; 639-668
0022-2518
CONICET Digital
CONICET
url http://hdl.handle.net/11336/159562
identifier_str_mv Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Han’s conjecture and hochschild homology for null-square projective algebras; Indiana University; Indiana University Mathematics Journal; 70; 2; 5-2021; 639-668
0022-2518
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1512/iumj.2021.70.8402
info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=8402&year=2021&volume=70
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Indiana University
publisher.none.fl_str_mv Indiana University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613750146990080
score 13.070432