Han’s conjecture and hochschild homology for null-square projective algebras
- Autores
- Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H .
Fil: Cibils, Claude. No especifíca;
Fil: Redondo, Maria Julia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
GLOBAL DIMENSION
HAN’S CONJECTURE
HOCHSCHILD HOMOLOGY
SMOOTH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/159562
Ver los metadatos del registro completo
id |
CONICETDig_e7ab45db8573a2de5b6857f09a0b04a3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/159562 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Han’s conjecture and hochschild homology for null-square projective algebrasCibils, ClaudeRedondo, Maria JuliaSolotar, Andrea LeonorGLOBAL DIMENSIONHAN’S CONJECTUREHOCHSCHILD HOMOLOGYSMOOTHhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H .Fil: Cibils, Claude. No especifíca;Fil: Redondo, Maria Julia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaIndiana University2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159562Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Han’s conjecture and hochschild homology for null-square projective algebras; Indiana University; Indiana University Mathematics Journal; 70; 2; 5-2021; 639-6680022-2518CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1512/iumj.2021.70.8402info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=8402&year=2021&volume=70info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:49Zoai:ri.conicet.gov.ar:11336/159562instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:49.439CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Han’s conjecture and hochschild homology for null-square projective algebras |
title |
Han’s conjecture and hochschild homology for null-square projective algebras |
spellingShingle |
Han’s conjecture and hochschild homology for null-square projective algebras Cibils, Claude GLOBAL DIMENSION HAN’S CONJECTURE HOCHSCHILD HOMOLOGY SMOOTH |
title_short |
Han’s conjecture and hochschild homology for null-square projective algebras |
title_full |
Han’s conjecture and hochschild homology for null-square projective algebras |
title_fullStr |
Han’s conjecture and hochschild homology for null-square projective algebras |
title_full_unstemmed |
Han’s conjecture and hochschild homology for null-square projective algebras |
title_sort |
Han’s conjecture and hochschild homology for null-square projective algebras |
dc.creator.none.fl_str_mv |
Cibils, Claude Redondo, Maria Julia Solotar, Andrea Leonor |
author |
Cibils, Claude |
author_facet |
Cibils, Claude Redondo, Maria Julia Solotar, Andrea Leonor |
author_role |
author |
author2 |
Redondo, Maria Julia Solotar, Andrea Leonor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GLOBAL DIMENSION HAN’S CONJECTURE HOCHSCHILD HOMOLOGY SMOOTH |
topic |
GLOBAL DIMENSION HAN’S CONJECTURE HOCHSCHILD HOMOLOGY SMOOTH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H . Fil: Cibils, Claude. No especifíca; Fil: Redondo, Maria Julia. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Solotar, Andrea Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Let H be the class of algebras verifying Han’s conjecture. In this paper we analyse two types of algebras with the aim of providing an inductive step towards the proof of this conjecture. First, we show that if an algebra Λ is triangular with respect to a system of non-necessarily primitive idempotents, and if the algebras at the idempotents belong to H, then Λ is in H . Second, we consider a 2 × 2 matrix algebra, with two algebras on the diagonal, two projective bimodules in the corners, and zero corner products. They are not triangular with respect to the system of the two diagonal idempotents. However, the analogous result holds: namely, if both algebras on the diagonal belong to H, then the algebra itself is in H . |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/159562 Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Han’s conjecture and hochschild homology for null-square projective algebras; Indiana University; Indiana University Mathematics Journal; 70; 2; 5-2021; 639-668 0022-2518 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/159562 |
identifier_str_mv |
Cibils, Claude; Redondo, Maria Julia; Solotar, Andrea Leonor; Han’s conjecture and hochschild homology for null-square projective algebras; Indiana University; Indiana University Mathematics Journal; 70; 2; 5-2021; 639-668 0022-2518 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1512/iumj.2021.70.8402 info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/IUMJ/fulltext.php?artid=8402&year=2021&volume=70 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Indiana University |
publisher.none.fl_str_mv |
Indiana University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613750146990080 |
score |
13.070432 |