Two classes of algebras with infinite Hochschild homology

Autores
Solotar, Andrea Leonor; Vigué Poirrier, Micheline
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove without any assumption on the ground field that higher Hochschild homology groups do not vanish for two large classes of algebras whose global dimension is not finite.
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vigué Poirrier, Micheline. Universite de Paris 13-nord; Francia
Materia
Global Dimension
Hochschild Homology Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15085

id CONICETDig_073f682d93a31e73b5c4000dcc8368c3
oai_identifier_str oai:ri.conicet.gov.ar:11336/15085
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two classes of algebras with infinite Hochschild homologySolotar, Andrea LeonorVigué Poirrier, MichelineGlobal DimensionHochschild Homology Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove without any assumption on the ground field that higher Hochschild homology groups do not vanish for two large classes of algebras whose global dimension is not finite.Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Vigué Poirrier, Micheline. Universite de Paris 13-nord; FranciaAmerican Mathematical Society2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15085Solotar, Andrea Leonor; Vigué Poirrier, Micheline; Two classes of algebras with infinite Hochschild homology; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 3; 3-2010; 861-8690002-9939enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-03/S0002-9939-09-10168-5/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-10168-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:35:12Zoai:ri.conicet.gov.ar:11336/15085instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:35:12.795CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two classes of algebras with infinite Hochschild homology
title Two classes of algebras with infinite Hochschild homology
spellingShingle Two classes of algebras with infinite Hochschild homology
Solotar, Andrea Leonor
Global Dimension
Hochschild Homology Theory
title_short Two classes of algebras with infinite Hochschild homology
title_full Two classes of algebras with infinite Hochschild homology
title_fullStr Two classes of algebras with infinite Hochschild homology
title_full_unstemmed Two classes of algebras with infinite Hochschild homology
title_sort Two classes of algebras with infinite Hochschild homology
dc.creator.none.fl_str_mv Solotar, Andrea Leonor
Vigué Poirrier, Micheline
author Solotar, Andrea Leonor
author_facet Solotar, Andrea Leonor
Vigué Poirrier, Micheline
author_role author
author2 Vigué Poirrier, Micheline
author2_role author
dc.subject.none.fl_str_mv Global Dimension
Hochschild Homology Theory
topic Global Dimension
Hochschild Homology Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove without any assumption on the ground field that higher Hochschild homology groups do not vanish for two large classes of algebras whose global dimension is not finite.
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vigué Poirrier, Micheline. Universite de Paris 13-nord; Francia
description We prove without any assumption on the ground field that higher Hochschild homology groups do not vanish for two large classes of algebras whose global dimension is not finite.
publishDate 2010
dc.date.none.fl_str_mv 2010-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15085
Solotar, Andrea Leonor; Vigué Poirrier, Micheline; Two classes of algebras with infinite Hochschild homology; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 3; 3-2010; 861-869
0002-9939
url http://hdl.handle.net/11336/15085
identifier_str_mv Solotar, Andrea Leonor; Vigué Poirrier, Micheline; Two classes of algebras with infinite Hochschild homology; American Mathematical Society; Proceedings Of The American Mathematical Society; 138; 3; 3-2010; 861-869
0002-9939
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2010-138-03/S0002-9939-09-10168-5/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-09-10168-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083479012376576
score 13.22299