Hochschild (Co)Homology of Hopf Crossed Products
- Autores
- Guccione, Jorge Alberto; Guccione, Juan Jose
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
HOPF ALGEBRA
HOCHSCHILD HOMOLOGY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109663
Ver los metadatos del registro completo
id |
CONICETDig_fbaf66194ff2aa2aa70f32386cec42f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109663 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hochschild (Co)Homology of Hopf Crossed ProductsGuccione, Jorge AlbertoGuccione, Juan JoseHOPF ALGEBRAHOCHSCHILD HOMOLOGYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaSpringer2002-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109663Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Hopf Crossed Products; Springer; K-theory; 25; 2; 2-2002; 139-1690920-3036CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0104075info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:38Zoai:ri.conicet.gov.ar:11336/109663instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:38.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hochschild (Co)Homology of Hopf Crossed Products |
title |
Hochschild (Co)Homology of Hopf Crossed Products |
spellingShingle |
Hochschild (Co)Homology of Hopf Crossed Products Guccione, Jorge Alberto HOPF ALGEBRA HOCHSCHILD HOMOLOGY |
title_short |
Hochschild (Co)Homology of Hopf Crossed Products |
title_full |
Hochschild (Co)Homology of Hopf Crossed Products |
title_fullStr |
Hochschild (Co)Homology of Hopf Crossed Products |
title_full_unstemmed |
Hochschild (Co)Homology of Hopf Crossed Products |
title_sort |
Hochschild (Co)Homology of Hopf Crossed Products |
dc.creator.none.fl_str_mv |
Guccione, Jorge Alberto Guccione, Juan Jose |
author |
Guccione, Jorge Alberto |
author_facet |
Guccione, Jorge Alberto Guccione, Juan Jose |
author_role |
author |
author2 |
Guccione, Juan Jose |
author2_role |
author |
dc.subject.none.fl_str_mv |
HOPF ALGEBRA HOCHSCHILD HOMOLOGY |
topic |
HOPF ALGEBRA HOCHSCHILD HOMOLOGY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex. Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109663 Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Hopf Crossed Products; Springer; K-theory; 25; 2; 2-2002; 139-169 0920-3036 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109663 |
identifier_str_mv |
Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Hopf Crossed Products; Springer; K-theory; 25; 2; 2-2002; 139-169 0920-3036 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0104075 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083145339764736 |
score |
13.22299 |