Hochschild (Co)Homology of Hopf Crossed Products

Autores
Guccione, Jorge Alberto; Guccione, Juan Jose
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
HOPF ALGEBRA
HOCHSCHILD HOMOLOGY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109663

id CONICETDig_fbaf66194ff2aa2aa70f32386cec42f6
oai_identifier_str oai:ri.conicet.gov.ar:11336/109663
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hochschild (Co)Homology of Hopf Crossed ProductsGuccione, Jorge AlbertoGuccione, Juan JoseHOPF ALGEBRAHOCHSCHILD HOMOLOGYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaSpringer2002-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109663Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Hopf Crossed Products; Springer; K-theory; 25; 2; 2-2002; 139-1690920-3036CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0104075info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:00:38Zoai:ri.conicet.gov.ar:11336/109663instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:00:38.512CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hochschild (Co)Homology of Hopf Crossed Products
title Hochschild (Co)Homology of Hopf Crossed Products
spellingShingle Hochschild (Co)Homology of Hopf Crossed Products
Guccione, Jorge Alberto
HOPF ALGEBRA
HOCHSCHILD HOMOLOGY
title_short Hochschild (Co)Homology of Hopf Crossed Products
title_full Hochschild (Co)Homology of Hopf Crossed Products
title_fullStr Hochschild (Co)Homology of Hopf Crossed Products
title_full_unstemmed Hochschild (Co)Homology of Hopf Crossed Products
title_sort Hochschild (Co)Homology of Hopf Crossed Products
dc.creator.none.fl_str_mv Guccione, Jorge Alberto
Guccione, Juan Jose
author Guccione, Jorge Alberto
author_facet Guccione, Jorge Alberto
Guccione, Juan Jose
author_role author
author2 Guccione, Juan Jose
author2_role author
dc.subject.none.fl_str_mv HOPF ALGEBRA
HOCHSCHILD HOMOLOGY
topic HOPF ALGEBRA
HOCHSCHILD HOMOLOGY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
description For a general crossed product E=A\#_f H, of an algebra A by a Hopf algebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild homology and cohomology of E. These complexes are equipped with natural filtrations. The spectral sequences associated to them coincide with the ones obtained using a natural generalization of the of the direct method introduced in [H-S]. We also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then the Hochschild (co)homology of E with coefficients in M is the (co)homology of H with coefficients in a (co)chain complex.
publishDate 2002
dc.date.none.fl_str_mv 2002-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109663
Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Hopf Crossed Products; Springer; K-theory; 25; 2; 2-2002; 139-169
0920-3036
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109663
identifier_str_mv Guccione, Jorge Alberto; Guccione, Juan Jose; Hochschild (Co)Homology of Hopf Crossed Products; Springer; K-theory; 25; 2; 2-2002; 139-169
0920-3036
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0104075
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083145339764736
score 13.22299