Hochschild and cyclic homology of Yang–Mills algebras
- Autores
- Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
Fil: Herscovich Ramoneda, Estanislao Benito. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Yang-Mills
Homology Theory
Hochschild Homology
Cyclic Homology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19944
Ver los metadatos del registro completo
id |
CONICETDig_5aee6a0cf762d23888a17b9ad7e28d5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19944 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hochschild and cyclic homology of Yang–Mills algebrasHerscovich Ramoneda, Estanislao BenitoSolotar, Andrea LeonorYang-MillsHomology TheoryHochschild HomologyCyclic Homologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.Fil: Herscovich Ramoneda, Estanislao Benito. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDe Gruyter2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19944Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-1560075-4102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/CRELLE.2011.107info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/crll.2012.2012.issue-665/CRELLE.2011.107/CRELLE.2011.107.xmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0906.2576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:16Zoai:ri.conicet.gov.ar:11336/19944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:16.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hochschild and cyclic homology of Yang–Mills algebras |
title |
Hochschild and cyclic homology of Yang–Mills algebras |
spellingShingle |
Hochschild and cyclic homology of Yang–Mills algebras Herscovich Ramoneda, Estanislao Benito Yang-Mills Homology Theory Hochschild Homology Cyclic Homology |
title_short |
Hochschild and cyclic homology of Yang–Mills algebras |
title_full |
Hochschild and cyclic homology of Yang–Mills algebras |
title_fullStr |
Hochschild and cyclic homology of Yang–Mills algebras |
title_full_unstemmed |
Hochschild and cyclic homology of Yang–Mills algebras |
title_sort |
Hochschild and cyclic homology of Yang–Mills algebras |
dc.creator.none.fl_str_mv |
Herscovich Ramoneda, Estanislao Benito Solotar, Andrea Leonor |
author |
Herscovich Ramoneda, Estanislao Benito |
author_facet |
Herscovich Ramoneda, Estanislao Benito Solotar, Andrea Leonor |
author_role |
author |
author2 |
Solotar, Andrea Leonor |
author2_role |
author |
dc.subject.none.fl_str_mv |
Yang-Mills Homology Theory Hochschild Homology Cyclic Homology |
topic |
Yang-Mills Homology Theory Hochschild Homology Cyclic Homology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group. Fil: Herscovich Ramoneda, Estanislao Benito. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19944 Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-156 0075-4102 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19944 |
identifier_str_mv |
Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-156 0075-4102 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/CRELLE.2011.107 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/crll.2012.2012.issue-665/CRELLE.2011.107/CRELLE.2011.107.xml info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0906.2576 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269792560480256 |
score |
13.13397 |