Hochschild and cyclic homology of Yang–Mills algebras

Autores
Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
Fil: Herscovich Ramoneda, Estanislao Benito. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Yang-Mills
Homology Theory
Hochschild Homology
Cyclic Homology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19944

id CONICETDig_5aee6a0cf762d23888a17b9ad7e28d5f
oai_identifier_str oai:ri.conicet.gov.ar:11336/19944
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hochschild and cyclic homology of Yang–Mills algebrasHerscovich Ramoneda, Estanislao BenitoSolotar, Andrea LeonorYang-MillsHomology TheoryHochschild HomologyCyclic Homologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.Fil: Herscovich Ramoneda, Estanislao Benito. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDe Gruyter2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19944Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-1560075-4102CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/CRELLE.2011.107info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/crll.2012.2012.issue-665/CRELLE.2011.107/CRELLE.2011.107.xmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0906.2576info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:16Zoai:ri.conicet.gov.ar:11336/19944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:16.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hochschild and cyclic homology of Yang–Mills algebras
title Hochschild and cyclic homology of Yang–Mills algebras
spellingShingle Hochschild and cyclic homology of Yang–Mills algebras
Herscovich Ramoneda, Estanislao Benito
Yang-Mills
Homology Theory
Hochschild Homology
Cyclic Homology
title_short Hochschild and cyclic homology of Yang–Mills algebras
title_full Hochschild and cyclic homology of Yang–Mills algebras
title_fullStr Hochschild and cyclic homology of Yang–Mills algebras
title_full_unstemmed Hochschild and cyclic homology of Yang–Mills algebras
title_sort Hochschild and cyclic homology of Yang–Mills algebras
dc.creator.none.fl_str_mv Herscovich Ramoneda, Estanislao Benito
Solotar, Andrea Leonor
author Herscovich Ramoneda, Estanislao Benito
author_facet Herscovich Ramoneda, Estanislao Benito
Solotar, Andrea Leonor
author_role author
author2 Solotar, Andrea Leonor
author2_role author
dc.subject.none.fl_str_mv Yang-Mills
Homology Theory
Hochschild Homology
Cyclic Homology
topic Yang-Mills
Homology Theory
Hochschild Homology
Cyclic Homology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
Fil: Herscovich Ramoneda, Estanislao Benito. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang–Mills algebras YM(n) (n ∈ ℕ≧2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal (n) in (n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19944
Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-156
0075-4102
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19944
identifier_str_mv Herscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Hochschild and cyclic homology of Yang–Mills algebras; De Gruyter; Journal Fur Die Reine Und Angewandte Mathematik; 2012; 665; 4-2012; 73-156
0075-4102
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1515/CRELLE.2011.107
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/crll.2012.2012.issue-665/CRELLE.2011.107/CRELLE.2011.107.xml
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0906.2576
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269792560480256
score 13.13397