Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem

Autores
Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mattia, Sara. Technische Universität Dortmund; Alemania
Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia
Materia
Bounded Coloring
Capacitated Coloring
Equitable Coloring
Permutation Graphs
Scheduling Problems
Thinness
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14909

id CONICETDig_abc65ce5e5efafd26007e33d0d93fe86
oai_identifier_str oai:ri.conicet.gov.ar:11336/14909
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problemBonomo, FlaviaMattia, SaraOriolo, GianpaoloBounded ColoringCapacitated ColoringEquitable ColoringPermutation GraphsScheduling ProblemsThinnesshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mattia, Sara. Technische Universität Dortmund; AlemaniaFil: Oriolo, Gianpaolo. Universita Tor Vergata; ItaliaElsevier2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14909Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo; Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem; Elsevier; Theoretical Computer Science; 412; 45; 11-2011; 6261-62680304-3975enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2011.07.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397511006220info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:09Zoai:ri.conicet.gov.ar:11336/14909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:10.198CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
title Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
spellingShingle Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
Bonomo, Flavia
Bounded Coloring
Capacitated Coloring
Equitable Coloring
Permutation Graphs
Scheduling Problems
Thinness
title_short Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
title_full Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
title_fullStr Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
title_full_unstemmed Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
title_sort Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
dc.creator.none.fl_str_mv Bonomo, Flavia
Mattia, Sara
Oriolo, Gianpaolo
author Bonomo, Flavia
author_facet Bonomo, Flavia
Mattia, Sara
Oriolo, Gianpaolo
author_role author
author2 Mattia, Sara
Oriolo, Gianpaolo
author2_role author
author
dc.subject.none.fl_str_mv Bounded Coloring
Capacitated Coloring
Equitable Coloring
Permutation Graphs
Scheduling Problems
Thinness
topic Bounded Coloring
Capacitated Coloring
Equitable Coloring
Permutation Graphs
Scheduling Problems
Thinness
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mattia, Sara. Technische Universität Dortmund; Alemania
Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia
description The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded.
publishDate 2011
dc.date.none.fl_str_mv 2011-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14909
Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo; Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem; Elsevier; Theoretical Computer Science; 412; 45; 11-2011; 6261-6268
0304-3975
url http://hdl.handle.net/11336/14909
identifier_str_mv Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo; Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem; Elsevier; Theoretical Computer Science; 412; 45; 11-2011; 6261-6268
0304-3975
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2011.07.012
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397511006220
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269077718958080
score 13.13397