Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem
- Autores
- Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded.
Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mattia, Sara. Technische Universität Dortmund; Alemania
Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia - Materia
-
Bounded Coloring
Capacitated Coloring
Equitable Coloring
Permutation Graphs
Scheduling Problems
Thinness - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14909
Ver los metadatos del registro completo
id |
CONICETDig_abc65ce5e5efafd26007e33d0d93fe86 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14909 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problemBonomo, FlaviaMattia, SaraOriolo, GianpaoloBounded ColoringCapacitated ColoringEquitable ColoringPermutation GraphsScheduling ProblemsThinnesshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mattia, Sara. Technische Universität Dortmund; AlemaniaFil: Oriolo, Gianpaolo. Universita Tor Vergata; ItaliaElsevier2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14909Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo; Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem; Elsevier; Theoretical Computer Science; 412; 45; 11-2011; 6261-62680304-3975enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2011.07.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397511006220info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:09Zoai:ri.conicet.gov.ar:11336/14909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:10.198CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
title |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
spellingShingle |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem Bonomo, Flavia Bounded Coloring Capacitated Coloring Equitable Coloring Permutation Graphs Scheduling Problems Thinness |
title_short |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
title_full |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
title_fullStr |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
title_full_unstemmed |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
title_sort |
Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Mattia, Sara Oriolo, Gianpaolo |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Mattia, Sara Oriolo, Gianpaolo |
author_role |
author |
author2 |
Mattia, Sara Oriolo, Gianpaolo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Bounded Coloring Capacitated Coloring Equitable Coloring Permutation Graphs Scheduling Problems Thinness |
topic |
Bounded Coloring Capacitated Coloring Equitable Coloring Permutation Graphs Scheduling Problems Thinness |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded. Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Mattia, Sara. Technische Universität Dortmund; Alemania Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia |
description |
The Double Traveling Salesman Problem with Multiple Stacks is a vehicle routing problem in which pickups and deliveries must be performed in two independent networks. The items are stored in stacks and repacking is not allowed. Given a pickup and a delivery tour, the problem of checking if there exists a valid distribution of items into s stacks of size h that is consistent with the given tours, is known as Pickup and Delivery Tour Combination (PDTC) problem. n the paper, we show that the PDTC problem can be solved in polynomial time when the number s of stacks is fixed but the size of each stack is not. We build upon the equivalence between the PDTC problem and the bounded coloring (BC) problem on permutation graphs: for the latter problem, s is the number of colors and h is the number of vertices that can get a same color. We show that the BC problem can be solved in polynomial time when s is a fixed constant on co-comparability graphs, a superclass of permutation graphs. To the contrary, the BC problem is known to be hard on permutation graphs when h≥ 6 is a fixed constant, but s is unbounded. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14909 Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo; Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem; Elsevier; Theoretical Computer Science; 412; 45; 11-2011; 6261-6268 0304-3975 |
url |
http://hdl.handle.net/11336/14909 |
identifier_str_mv |
Bonomo, Flavia; Mattia, Sara; Oriolo, Gianpaolo; Bounded coloring of co-comparability graphs and the pickup and delivery tour combination problem; Elsevier; Theoretical Computer Science; 412; 45; 11-2011; 6261-6268 0304-3975 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2011.07.012 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397511006220 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269077718958080 |
score |
13.13397 |