A generalized Gelfand pair attached to a 3-step nilpotent Lie group

Autores
Gallo, Andrea Lilén; Saal, Linda Victoria
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let N be a nilpotent Lie group and K a compact subgroup of the automorphism group Aut(N) of N. It is well-known that if (K⋉ N, K) is a Gelfand pair then N is at most 2-step nilpotent Lie group. The notion of Gelfand pair was generalized when K is a non-compact group. In this work, we give an example of a 3-step nilpotent Lie group and a non-compact subgroup K of Aut(N) such that (K⋉ N, N) is a generalized Gelfand pair.
Fil: Gallo, Andrea Lilén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
GENERALIZD GELFAND PAIRS
NILPOTENT LIE GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143430

id CONICETDig_e5e94634750cddaf8d620bbfdb7dca79
oai_identifier_str oai:ri.conicet.gov.ar:11336/143430
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A generalized Gelfand pair attached to a 3-step nilpotent Lie groupGallo, Andrea LilénSaal, Linda VictoriaGENERALIZD GELFAND PAIRSNILPOTENT LIE GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let N be a nilpotent Lie group and K a compact subgroup of the automorphism group Aut(N) of N. It is well-known that if (K⋉ N, K) is a Gelfand pair then N is at most 2-step nilpotent Lie group. The notion of Gelfand pair was generalized when K is a non-compact group. In this work, we give an example of a 3-step nilpotent Lie group and a non-compact subgroup K of Aut(N) such that (K⋉ N, N) is a generalized Gelfand pair.Fil: Gallo, Andrea Lilén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaBirkhauser Boston Inc2020-08-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143430Gallo, Andrea Lilén; Saal, Linda Victoria; A generalized Gelfand pair attached to a 3-step nilpotent Lie group; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 26; 4; 24-8-2020; 1-101069-58691531-5851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00041-020-09772-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-020-09772-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:02Zoai:ri.conicet.gov.ar:11336/143430instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:02.647CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A generalized Gelfand pair attached to a 3-step nilpotent Lie group
title A generalized Gelfand pair attached to a 3-step nilpotent Lie group
spellingShingle A generalized Gelfand pair attached to a 3-step nilpotent Lie group
Gallo, Andrea Lilén
GENERALIZD GELFAND PAIRS
NILPOTENT LIE GROUP
title_short A generalized Gelfand pair attached to a 3-step nilpotent Lie group
title_full A generalized Gelfand pair attached to a 3-step nilpotent Lie group
title_fullStr A generalized Gelfand pair attached to a 3-step nilpotent Lie group
title_full_unstemmed A generalized Gelfand pair attached to a 3-step nilpotent Lie group
title_sort A generalized Gelfand pair attached to a 3-step nilpotent Lie group
dc.creator.none.fl_str_mv Gallo, Andrea Lilén
Saal, Linda Victoria
author Gallo, Andrea Lilén
author_facet Gallo, Andrea Lilén
Saal, Linda Victoria
author_role author
author2 Saal, Linda Victoria
author2_role author
dc.subject.none.fl_str_mv GENERALIZD GELFAND PAIRS
NILPOTENT LIE GROUP
topic GENERALIZD GELFAND PAIRS
NILPOTENT LIE GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let N be a nilpotent Lie group and K a compact subgroup of the automorphism group Aut(N) of N. It is well-known that if (K⋉ N, K) is a Gelfand pair then N is at most 2-step nilpotent Lie group. The notion of Gelfand pair was generalized when K is a non-compact group. In this work, we give an example of a 3-step nilpotent Lie group and a non-compact subgroup K of Aut(N) such that (K⋉ N, N) is a generalized Gelfand pair.
Fil: Gallo, Andrea Lilén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Saal, Linda Victoria. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description Let N be a nilpotent Lie group and K a compact subgroup of the automorphism group Aut(N) of N. It is well-known that if (K⋉ N, K) is a Gelfand pair then N is at most 2-step nilpotent Lie group. The notion of Gelfand pair was generalized when K is a non-compact group. In this work, we give an example of a 3-step nilpotent Lie group and a non-compact subgroup K of Aut(N) such that (K⋉ N, N) is a generalized Gelfand pair.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143430
Gallo, Andrea Lilén; Saal, Linda Victoria; A generalized Gelfand pair attached to a 3-step nilpotent Lie group; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 26; 4; 24-8-2020; 1-10
1069-5869
1531-5851
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143430
identifier_str_mv Gallo, Andrea Lilén; Saal, Linda Victoria; A generalized Gelfand pair attached to a 3-step nilpotent Lie group; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 26; 4; 24-8-2020; 1-10
1069-5869
1531-5851
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00041-020-09772-4
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-020-09772-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Boston Inc
publisher.none.fl_str_mv Birkhauser Boston Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083047741456384
score 12.891075