On dual valued operators on Banach álgebras

Autores
Aleandro, María José; Peña, Carlos César
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that =0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.
Fil: Aleandro, María José. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peña, Carlos César. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Arens products
amenable and weakly amenable Banach algebras
dual Banach algebras
Beurling algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67110

id CONICETDig_e5a8fb7583c026e5f47d338735227072
oai_identifier_str oai:ri.conicet.gov.ar:11336/67110
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On dual valued operators on Banach álgebrasAleandro, María JoséPeña, Carlos CésarArens productsamenable and weakly amenable Banach algebrasdual Banach algebrasBeurling algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.Fil: Aleandro, María José. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peña, Carlos César. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaState University of New York at Albany2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67110Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-6651076-9803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://nyjm.albany.edu/j/2012/18-35.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:05Zoai:ri.conicet.gov.ar:11336/67110instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:06.21CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On dual valued operators on Banach álgebras
title On dual valued operators on Banach álgebras
spellingShingle On dual valued operators on Banach álgebras
Aleandro, María José
Arens products
amenable and weakly amenable Banach algebras
dual Banach algebras
Beurling algebras
title_short On dual valued operators on Banach álgebras
title_full On dual valued operators on Banach álgebras
title_fullStr On dual valued operators on Banach álgebras
title_full_unstemmed On dual valued operators on Banach álgebras
title_sort On dual valued operators on Banach álgebras
dc.creator.none.fl_str_mv Aleandro, María José
Peña, Carlos César
author Aleandro, María José
author_facet Aleandro, María José
Peña, Carlos César
author_role author
author2 Peña, Carlos César
author2_role author
dc.subject.none.fl_str_mv Arens products
amenable and weakly amenable Banach algebras
dual Banach algebras
Beurling algebras
topic Arens products
amenable and weakly amenable Banach algebras
dual Banach algebras
Beurling algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.
Fil: Aleandro, María José. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peña, Carlos César. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67110
Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-665
1076-9803
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67110
identifier_str_mv Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-665
1076-9803
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://nyjm.albany.edu/j/2012/18-35.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv State University of New York at Albany
publisher.none.fl_str_mv State University of New York at Albany
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614333757128704
score 13.070432