On dual valued operators on Banach álgebras
- Autores
- Aleandro, María José; Peña, Carlos César
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that =0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.
Fil: Aleandro, María José. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peña, Carlos César. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Arens products
amenable and weakly amenable Banach algebras
dual Banach algebras
Beurling algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67110
Ver los metadatos del registro completo
id |
CONICETDig_e5a8fb7583c026e5f47d338735227072 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67110 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On dual valued operators on Banach álgebrasAleandro, María JoséPeña, Carlos CésarArens productsamenable and weakly amenable Banach algebrasdual Banach algebrasBeurling algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.Fil: Aleandro, María José. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peña, Carlos César. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaState University of New York at Albany2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67110Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-6651076-9803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://nyjm.albany.edu/j/2012/18-35.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:05Zoai:ri.conicet.gov.ar:11336/67110instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:06.21CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On dual valued operators on Banach álgebras |
title |
On dual valued operators on Banach álgebras |
spellingShingle |
On dual valued operators on Banach álgebras Aleandro, María José Arens products amenable and weakly amenable Banach algebras dual Banach algebras Beurling algebras |
title_short |
On dual valued operators on Banach álgebras |
title_full |
On dual valued operators on Banach álgebras |
title_fullStr |
On dual valued operators on Banach álgebras |
title_full_unstemmed |
On dual valued operators on Banach álgebras |
title_sort |
On dual valued operators on Banach álgebras |
dc.creator.none.fl_str_mv |
Aleandro, María José Peña, Carlos César |
author |
Aleandro, María José |
author_facet |
Aleandro, María José Peña, Carlos César |
author_role |
author |
author2 |
Peña, Carlos César |
author2_role |
author |
dc.subject.none.fl_str_mv |
Arens products amenable and weakly amenable Banach algebras dual Banach algebras Beurling algebras |
topic |
Arens products amenable and weakly amenable Banach algebras dual Banach algebras Beurling algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}. Fil: Aleandro, María José. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Peña, Carlos César. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Núcleo Consolidado de Matemática Pura y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67110 Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-665 1076-9803 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67110 |
identifier_str_mv |
Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-665 1076-9803 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://nyjm.albany.edu/j/2012/18-35.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
State University of New York at Albany |
publisher.none.fl_str_mv |
State University of New York at Albany |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614333757128704 |
score |
13.070432 |