An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups
- Autores
- Poggi, Facundo Sebastian; Sasyk, Roman
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using ultrapowers of C-algebras, we provide a new construction of the multiplier algebra of a C-algebra. This extends the work of Avsec and Goldbring [Houston J. Math., to appear, arXiv:1610.09276] to the setting ofnoncommutative and nonseparable C-algebras. We also extend their work to give a new proof of the fact that groups acting transitively on locally finite trees with boundary amenable stabilizers are boundary amenable.
Fil: Poggi, Facundo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
MULTIPLIER ALGEBRA
ULTRAPRODUCT OF C* ALGEBRAS
BOUNDARY AMENABLE GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106621
Ver los metadatos del registro completo
id |
CONICETDig_c47853d1b539765da12e36d37b27e050 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106621 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groupsPoggi, Facundo SebastianSasyk, RomanMULTIPLIER ALGEBRAULTRAPRODUCT OF C* ALGEBRASBOUNDARY AMENABLE GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Using ultrapowers of C-algebras, we provide a new construction of the multiplier algebra of a C-algebra. This extends the work of Avsec and Goldbring [Houston J. Math., to appear, arXiv:1610.09276] to the setting ofnoncommutative and nonseparable C-algebras. We also extend their work to give a new proof of the fact that groups acting transitively on locally finite trees with boundary amenable stabilizers are boundary amenable.Fil: Poggi, Facundo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaMashhad Tusi Mathematical Research Group2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106621Poggi, Facundo Sebastian; Sasyk, Roman; An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups; Mashhad Tusi Mathematical Research Group; Advances in Operator Theory; 4; 4; 5-2019; 852-8642538-225XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.15352/aot.1904-1501info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1557885618info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:30Zoai:ri.conicet.gov.ar:11336/106621instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:30.729CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
title |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
spellingShingle |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups Poggi, Facundo Sebastian MULTIPLIER ALGEBRA ULTRAPRODUCT OF C* ALGEBRAS BOUNDARY AMENABLE GROUP |
title_short |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
title_full |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
title_fullStr |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
title_full_unstemmed |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
title_sort |
An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups |
dc.creator.none.fl_str_mv |
Poggi, Facundo Sebastian Sasyk, Roman |
author |
Poggi, Facundo Sebastian |
author_facet |
Poggi, Facundo Sebastian Sasyk, Roman |
author_role |
author |
author2 |
Sasyk, Roman |
author2_role |
author |
dc.subject.none.fl_str_mv |
MULTIPLIER ALGEBRA ULTRAPRODUCT OF C* ALGEBRAS BOUNDARY AMENABLE GROUP |
topic |
MULTIPLIER ALGEBRA ULTRAPRODUCT OF C* ALGEBRAS BOUNDARY AMENABLE GROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using ultrapowers of C-algebras, we provide a new construction of the multiplier algebra of a C-algebra. This extends the work of Avsec and Goldbring [Houston J. Math., to appear, arXiv:1610.09276] to the setting ofnoncommutative and nonseparable C-algebras. We also extend their work to give a new proof of the fact that groups acting transitively on locally finite trees with boundary amenable stabilizers are boundary amenable. Fil: Poggi, Facundo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Using ultrapowers of C-algebras, we provide a new construction of the multiplier algebra of a C-algebra. This extends the work of Avsec and Goldbring [Houston J. Math., to appear, arXiv:1610.09276] to the setting ofnoncommutative and nonseparable C-algebras. We also extend their work to give a new proof of the fact that groups acting transitively on locally finite trees with boundary amenable stabilizers are boundary amenable. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106621 Poggi, Facundo Sebastian; Sasyk, Roman; An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups; Mashhad Tusi Mathematical Research Group; Advances in Operator Theory; 4; 4; 5-2019; 852-864 2538-225X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106621 |
identifier_str_mv |
Poggi, Facundo Sebastian; Sasyk, Roman; An ultrapower construction of the multiplier algebra of a C*-algebra with an application to boundary amenability of groups; Mashhad Tusi Mathematical Research Group; Advances in Operator Theory; 4; 4; 5-2019; 852-864 2538-225X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.15352/aot.1904-1501 info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1557885618 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mashhad Tusi Mathematical Research Group |
publisher.none.fl_str_mv |
Mashhad Tusi Mathematical Research Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269289329983488 |
score |
13.13397 |