Finite-dimensional Nichols algebras over dual Radford algebras
- Autores
- Bagio, D.; García, Gastón Andrés; Jury Giraldi, Joao Matheus; Márquez, O.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For n, m ∈ N, let Hn,m be the dual of the Radford algebra of dimension n 2m. We present new finite-dimensional Nichols algebras arising from the study of simple Yetter-Drinfeld modules over Hn,m. Along the way, we describe the simple objects in Hn,m Hn,m YD and their projective envelopes. Then, we determine those simple modules that give rise to finite-dimensional Nichols algebras for the case n = 2. There are 18 possible cases. We present by generators and relations the corresponding Nichols algebras on five of these eighteen cases. As an application, we characterize finite-dimensional Nichols algebras over indecomposable modules for n = 2 = m and n = 2, m = 3, which recovers some results of the second and third author in the former case, and of Xiong in the latter.
Fil: Bagio, D.. Universidade Federal de Santa Maria; Brasil
Fil: García, Gastón Andrés. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Jury Giraldi, Joao Matheus. Universidade Federal de Santa Maria; Brasil
Fil: Márquez, O.. Universidade Federal de Santa Maria; Brasil - Materia
-
DUAL RADFORD HOPF ALGEBRA
HOPF ALGEBRA
NICHOLS ALGEBRA
STANDARD FILTRATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150434
Ver los metadatos del registro completo
id |
CONICETDig_9c6503e7461512f3e253485f7fa64dcf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150434 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite-dimensional Nichols algebras over dual Radford algebrasBagio, D.García, Gastón AndrésJury Giraldi, Joao MatheusMárquez, O.DUAL RADFORD HOPF ALGEBRAHOPF ALGEBRANICHOLS ALGEBRASTANDARD FILTRATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For n, m ∈ N, let Hn,m be the dual of the Radford algebra of dimension n 2m. We present new finite-dimensional Nichols algebras arising from the study of simple Yetter-Drinfeld modules over Hn,m. Along the way, we describe the simple objects in Hn,m Hn,m YD and their projective envelopes. Then, we determine those simple modules that give rise to finite-dimensional Nichols algebras for the case n = 2. There are 18 possible cases. We present by generators and relations the corresponding Nichols algebras on five of these eighteen cases. As an application, we characterize finite-dimensional Nichols algebras over indecomposable modules for n = 2 = m and n = 2, m = 3, which recovers some results of the second and third author in the former case, and of Xiong in the latter.Fil: Bagio, D.. Universidade Federal de Santa Maria; BrasilFil: García, Gastón Andrés. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Jury Giraldi, Joao Matheus. Universidade Federal de Santa Maria; BrasilFil: Márquez, O.. Universidade Federal de Santa Maria; BrasilWorld Scientific2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150434Bagio, D.; García, Gastón Andrés; Jury Giraldi, Joao Matheus; Márquez, O.; Finite-dimensional Nichols algebras over dual Radford algebras; World Scientific; Journal of Algebra and its Applications; 20; 1; 1-2021; 1-290219-49881793-6829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0219498821400016info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498821400016info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1910.05408info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:20Zoai:ri.conicet.gov.ar:11336/150434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:20.44CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite-dimensional Nichols algebras over dual Radford algebras |
title |
Finite-dimensional Nichols algebras over dual Radford algebras |
spellingShingle |
Finite-dimensional Nichols algebras over dual Radford algebras Bagio, D. DUAL RADFORD HOPF ALGEBRA HOPF ALGEBRA NICHOLS ALGEBRA STANDARD FILTRATION |
title_short |
Finite-dimensional Nichols algebras over dual Radford algebras |
title_full |
Finite-dimensional Nichols algebras over dual Radford algebras |
title_fullStr |
Finite-dimensional Nichols algebras over dual Radford algebras |
title_full_unstemmed |
Finite-dimensional Nichols algebras over dual Radford algebras |
title_sort |
Finite-dimensional Nichols algebras over dual Radford algebras |
dc.creator.none.fl_str_mv |
Bagio, D. García, Gastón Andrés Jury Giraldi, Joao Matheus Márquez, O. |
author |
Bagio, D. |
author_facet |
Bagio, D. García, Gastón Andrés Jury Giraldi, Joao Matheus Márquez, O. |
author_role |
author |
author2 |
García, Gastón Andrés Jury Giraldi, Joao Matheus Márquez, O. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DUAL RADFORD HOPF ALGEBRA HOPF ALGEBRA NICHOLS ALGEBRA STANDARD FILTRATION |
topic |
DUAL RADFORD HOPF ALGEBRA HOPF ALGEBRA NICHOLS ALGEBRA STANDARD FILTRATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For n, m ∈ N, let Hn,m be the dual of the Radford algebra of dimension n 2m. We present new finite-dimensional Nichols algebras arising from the study of simple Yetter-Drinfeld modules over Hn,m. Along the way, we describe the simple objects in Hn,m Hn,m YD and their projective envelopes. Then, we determine those simple modules that give rise to finite-dimensional Nichols algebras for the case n = 2. There are 18 possible cases. We present by generators and relations the corresponding Nichols algebras on five of these eighteen cases. As an application, we characterize finite-dimensional Nichols algebras over indecomposable modules for n = 2 = m and n = 2, m = 3, which recovers some results of the second and third author in the former case, and of Xiong in the latter. Fil: Bagio, D.. Universidade Federal de Santa Maria; Brasil Fil: García, Gastón Andrés. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Jury Giraldi, Joao Matheus. Universidade Federal de Santa Maria; Brasil Fil: Márquez, O.. Universidade Federal de Santa Maria; Brasil |
description |
For n, m ∈ N, let Hn,m be the dual of the Radford algebra of dimension n 2m. We present new finite-dimensional Nichols algebras arising from the study of simple Yetter-Drinfeld modules over Hn,m. Along the way, we describe the simple objects in Hn,m Hn,m YD and their projective envelopes. Then, we determine those simple modules that give rise to finite-dimensional Nichols algebras for the case n = 2. There are 18 possible cases. We present by generators and relations the corresponding Nichols algebras on five of these eighteen cases. As an application, we characterize finite-dimensional Nichols algebras over indecomposable modules for n = 2 = m and n = 2, m = 3, which recovers some results of the second and third author in the former case, and of Xiong in the latter. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150434 Bagio, D.; García, Gastón Andrés; Jury Giraldi, Joao Matheus; Márquez, O.; Finite-dimensional Nichols algebras over dual Radford algebras; World Scientific; Journal of Algebra and its Applications; 20; 1; 1-2021; 1-29 0219-4988 1793-6829 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150434 |
identifier_str_mv |
Bagio, D.; García, Gastón Andrés; Jury Giraldi, Joao Matheus; Márquez, O.; Finite-dimensional Nichols algebras over dual Radford algebras; World Scientific; Journal of Algebra and its Applications; 20; 1; 1-2021; 1-29 0219-4988 1793-6829 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0219498821400016 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498821400016 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1910.05408 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613826281996288 |
score |
13.070432 |