Derivaciones y dualidad en algebras de Banach

Autores
Aleandro, María José
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Peña, Carlos César
Panzone, Pablo
Descripción
Sin excepción, en este trabajo U denota un álgebra de Banach compleja. Los aportes originales de este trabajo se dan en tres capítulos: - En el Capítulo 2 asumimos que el álgebra de Banach U es Arens regular y consideramos derivaciones acotadas D : U→U* : Como U** admíte una estructura natural de álgebra de Banach estudiamos problemas concernientes a cuándo el operador adjunto D* : U** → U* es derivación. En particular, analizaremos el caso de la clase D(U) de derivaciones tales que (a,D(a)) = 0 para todo E U, las que caracterizamos. Veremos que para que el álgebra U sea débilmente amenable es necesario y suficiente que D(U) sea no trivial. Analizamos esta problemática en el caso específico de álgebras de Beurling construídas sobre el grupo aditivo de los enteros. Esta investigación está publicada en el New York Journal of Matematics [1]. - En el Capítulo 3 nos damos a la tarea de caracterizar los elementos a** E U** para los que a**U* es débil*-cerrado. Esta investigación tiene relación con la existencia de aproximaciones acotadas de la identidad en ideales cerrados del álgebra, por lo que se trata de un tema que requiere atención. El material presentado está en etapa de prensa de las Actas del XIV Congreso Dr. A. Monteiro [2]. - En el Capítulo 4 retomamos el tema derivaciones, ahora sobre el álgebra de convolución asociada a permutaciones de un conjunto numerable en si mismo. Es profusa la literatura sobre el particular, y naturalmente se da la necesidad de estudiar álgebras de convolución nito-dimensionales. Veremos cómo las algebras de convolución sobre grupos nitos de permutaciones pueden ser inmersas en álgebras de matrices. Por otra parte, si bien toda derivación centralizante sobre un álgebra de Banach mapea sobre el radical se verá que esta condición no es necesaria, incluso en el contexto finito dimensional. Esta investigación está en prensa en Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].
Without exception, U will denote a complex Banach algebra. Our original contributions in this work are given in three chapters: - In Chapter 2 we assume that the Banach algebra U is Arens regular and we consider bounded derivations D : U→U* : As U** has a natural structure of a Banach algebra we seek on conditions under which the adjoint operator D* : U** U→U* is a derivation. We shall characterize the class D(U) of bounded derivations so that (a,D(a)) = 0 for all a E U. We shall prove that the Banach algebra U is weakly amenable if and only if D(U) is non trivial. We shall consider this matters in the speci c case of Beurling algebras constructed on the additive group of integers. This research was published in the New York Journal of Mathematics [1]. - In Chapter 3 we shall characterize the elements a** E U** so that a**U* is weak*- closed. This investigation is connected with the existence of bounded approximate identities within closed ideals of U and is a matter that deserves attention. This investigation is in press of Actas del XIV Congreso Dr. A. Monteiro [2]. - In Chapter 4 we return to the issue of derivations, now on the convolution algebra on the discrete permutation group on a countable set. There is a huge literature in this matter and it is necessary to study nite dimensional convolution algebras. Althought any central derivation maps on the radical we shall see that this condition is not necessary, event in the nite dimensional context. This investigation is in press of Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].
TEXTO PARCIAL en período de teletrabajo
Fil: Aleandro, María José. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Materia
Matemática
Álgebras de Banach
Regularidad
Amenabilidad
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
Institución
Universidad Nacional del Sur
OAI Identificador
oai:repositorio.bc.uns.edu.ar:123456789/5285

id RID-UNS_0a99e00e6e7f759266f94f324c844200
oai_identifier_str oai:repositorio.bc.uns.edu.ar:123456789/5285
network_acronym_str RID-UNS
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
spelling Derivaciones y dualidad en algebras de BanachAleandro, María JoséMatemáticaÁlgebras de BanachRegularidadAmenabilidadSin excepción, en este trabajo U denota un álgebra de Banach compleja. Los aportes originales de este trabajo se dan en tres capítulos: - En el Capítulo 2 asumimos que el álgebra de Banach U es Arens regular y consideramos derivaciones acotadas D : U→U* : Como U** admíte una estructura natural de álgebra de Banach estudiamos problemas concernientes a cuándo el operador adjunto D* : U** → U* es derivación. En particular, analizaremos el caso de la clase D(U) de derivaciones tales que (a,D(a)) = 0 para todo E U, las que caracterizamos. Veremos que para que el álgebra U sea débilmente amenable es necesario y suficiente que D(U) sea no trivial. Analizamos esta problemática en el caso específico de álgebras de Beurling construídas sobre el grupo aditivo de los enteros. Esta investigación está publicada en el New York Journal of Matematics [1]. - En el Capítulo 3 nos damos a la tarea de caracterizar los elementos a** E U** para los que a**U* es débil*-cerrado. Esta investigación tiene relación con la existencia de aproximaciones acotadas de la identidad en ideales cerrados del álgebra, por lo que se trata de un tema que requiere atención. El material presentado está en etapa de prensa de las Actas del XIV Congreso Dr. A. Monteiro [2]. - En el Capítulo 4 retomamos el tema derivaciones, ahora sobre el álgebra de convolución asociada a permutaciones de un conjunto numerable en si mismo. Es profusa la literatura sobre el particular, y naturalmente se da la necesidad de estudiar álgebras de convolución nito-dimensionales. Veremos cómo las algebras de convolución sobre grupos nitos de permutaciones pueden ser inmersas en álgebras de matrices. Por otra parte, si bien toda derivación centralizante sobre un álgebra de Banach mapea sobre el radical se verá que esta condición no es necesaria, incluso en el contexto finito dimensional. Esta investigación está en prensa en Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].Without exception, U will denote a complex Banach algebra. Our original contributions in this work are given in three chapters: - In Chapter 2 we assume that the Banach algebra U is Arens regular and we consider bounded derivations D : U→U* : As U** has a natural structure of a Banach algebra we seek on conditions under which the adjoint operator D* : U** U→U* is a derivation. We shall characterize the class D(U) of bounded derivations so that (a,D(a)) = 0 for all a E U. We shall prove that the Banach algebra U is weakly amenable if and only if D(U) is non trivial. We shall consider this matters in the speci c case of Beurling algebras constructed on the additive group of integers. This research was published in the New York Journal of Mathematics [1]. - In Chapter 3 we shall characterize the elements a** E U** so that a**U* is weak*- closed. This investigation is connected with the existence of bounded approximate identities within closed ideals of U and is a matter that deserves attention. This investigation is in press of Actas del XIV Congreso Dr. A. Monteiro [2]. - In Chapter 4 we return to the issue of derivations, now on the convolution algebra on the discrete permutation group on a countable set. There is a huge literature in this matter and it is necessary to study nite dimensional convolution algebras. Althought any central derivation maps on the radical we shall see that this condition is not necessary, event in the nite dimensional context. This investigation is in press of Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].TEXTO PARCIAL en período de teletrabajoFil: Aleandro, María José. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaPeña, Carlos CésarPanzone, Pablo2020-03-10info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://repositoriodigital.uns.edu.ar/handle/123456789/5285spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)instname:Universidad Nacional del Sur2025-10-23T11:16:36Zoai:repositorio.bc.uns.edu.ar:123456789/5285instacron:UNSInstitucionalhttp://repositoriodigital.uns.edu.ar/Universidad públicaNo correspondehttp://repositoriodigital.uns.edu.ar/oaimesnaola@uns.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:2025-10-23 11:16:37.319Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Surfalse
dc.title.none.fl_str_mv Derivaciones y dualidad en algebras de Banach
title Derivaciones y dualidad en algebras de Banach
spellingShingle Derivaciones y dualidad en algebras de Banach
Aleandro, María José
Matemática
Álgebras de Banach
Regularidad
Amenabilidad
title_short Derivaciones y dualidad en algebras de Banach
title_full Derivaciones y dualidad en algebras de Banach
title_fullStr Derivaciones y dualidad en algebras de Banach
title_full_unstemmed Derivaciones y dualidad en algebras de Banach
title_sort Derivaciones y dualidad en algebras de Banach
dc.creator.none.fl_str_mv Aleandro, María José
author Aleandro, María José
author_facet Aleandro, María José
author_role author
dc.contributor.none.fl_str_mv Peña, Carlos César
Panzone, Pablo
dc.subject.none.fl_str_mv Matemática
Álgebras de Banach
Regularidad
Amenabilidad
topic Matemática
Álgebras de Banach
Regularidad
Amenabilidad
dc.description.none.fl_txt_mv Sin excepción, en este trabajo U denota un álgebra de Banach compleja. Los aportes originales de este trabajo se dan en tres capítulos: - En el Capítulo 2 asumimos que el álgebra de Banach U es Arens regular y consideramos derivaciones acotadas D : U→U* : Como U** admíte una estructura natural de álgebra de Banach estudiamos problemas concernientes a cuándo el operador adjunto D* : U** → U* es derivación. En particular, analizaremos el caso de la clase D(U) de derivaciones tales que (a,D(a)) = 0 para todo E U, las que caracterizamos. Veremos que para que el álgebra U sea débilmente amenable es necesario y suficiente que D(U) sea no trivial. Analizamos esta problemática en el caso específico de álgebras de Beurling construídas sobre el grupo aditivo de los enteros. Esta investigación está publicada en el New York Journal of Matematics [1]. - En el Capítulo 3 nos damos a la tarea de caracterizar los elementos a** E U** para los que a**U* es débil*-cerrado. Esta investigación tiene relación con la existencia de aproximaciones acotadas de la identidad en ideales cerrados del álgebra, por lo que se trata de un tema que requiere atención. El material presentado está en etapa de prensa de las Actas del XIV Congreso Dr. A. Monteiro [2]. - En el Capítulo 4 retomamos el tema derivaciones, ahora sobre el álgebra de convolución asociada a permutaciones de un conjunto numerable en si mismo. Es profusa la literatura sobre el particular, y naturalmente se da la necesidad de estudiar álgebras de convolución nito-dimensionales. Veremos cómo las algebras de convolución sobre grupos nitos de permutaciones pueden ser inmersas en álgebras de matrices. Por otra parte, si bien toda derivación centralizante sobre un álgebra de Banach mapea sobre el radical se verá que esta condición no es necesaria, incluso en el contexto finito dimensional. Esta investigación está en prensa en Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].
Without exception, U will denote a complex Banach algebra. Our original contributions in this work are given in three chapters: - In Chapter 2 we assume that the Banach algebra U is Arens regular and we consider bounded derivations D : U→U* : As U** has a natural structure of a Banach algebra we seek on conditions under which the adjoint operator D* : U** U→U* is a derivation. We shall characterize the class D(U) of bounded derivations so that (a,D(a)) = 0 for all a E U. We shall prove that the Banach algebra U is weakly amenable if and only if D(U) is non trivial. We shall consider this matters in the speci c case of Beurling algebras constructed on the additive group of integers. This research was published in the New York Journal of Mathematics [1]. - In Chapter 3 we shall characterize the elements a** E U** so that a**U* is weak*- closed. This investigation is connected with the existence of bounded approximate identities within closed ideals of U and is a matter that deserves attention. This investigation is in press of Actas del XIV Congreso Dr. A. Monteiro [2]. - In Chapter 4 we return to the issue of derivations, now on the convolution algebra on the discrete permutation group on a countable set. There is a huge literature in this matter and it is necessary to study nite dimensional convolution algebras. Althought any central derivation maps on the radical we shall see that this condition is not necessary, event in the nite dimensional context. This investigation is in press of Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].
TEXTO PARCIAL en período de teletrabajo
Fil: Aleandro, María José. Universidad Nacional del Sur. Departamento de Matemática; Argentina
description Sin excepción, en este trabajo U denota un álgebra de Banach compleja. Los aportes originales de este trabajo se dan en tres capítulos: - En el Capítulo 2 asumimos que el álgebra de Banach U es Arens regular y consideramos derivaciones acotadas D : U→U* : Como U** admíte una estructura natural de álgebra de Banach estudiamos problemas concernientes a cuándo el operador adjunto D* : U** → U* es derivación. En particular, analizaremos el caso de la clase D(U) de derivaciones tales que (a,D(a)) = 0 para todo E U, las que caracterizamos. Veremos que para que el álgebra U sea débilmente amenable es necesario y suficiente que D(U) sea no trivial. Analizamos esta problemática en el caso específico de álgebras de Beurling construídas sobre el grupo aditivo de los enteros. Esta investigación está publicada en el New York Journal of Matematics [1]. - En el Capítulo 3 nos damos a la tarea de caracterizar los elementos a** E U** para los que a**U* es débil*-cerrado. Esta investigación tiene relación con la existencia de aproximaciones acotadas de la identidad en ideales cerrados del álgebra, por lo que se trata de un tema que requiere atención. El material presentado está en etapa de prensa de las Actas del XIV Congreso Dr. A. Monteiro [2]. - En el Capítulo 4 retomamos el tema derivaciones, ahora sobre el álgebra de convolución asociada a permutaciones de un conjunto numerable en si mismo. Es profusa la literatura sobre el particular, y naturalmente se da la necesidad de estudiar álgebras de convolución nito-dimensionales. Veremos cómo las algebras de convolución sobre grupos nitos de permutaciones pueden ser inmersas en álgebras de matrices. Por otra parte, si bien toda derivación centralizante sobre un álgebra de Banach mapea sobre el radical se verá que esta condición no es necesaria, incluso en el contexto finito dimensional. Esta investigación está en prensa en Acta Mathematica Academiae Paedagogicae Nyíregyháziensis [3].
publishDate 2020
dc.date.none.fl_str_mv 2020-03-10
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://repositoriodigital.uns.edu.ar/handle/123456789/5285
url http://repositoriodigital.uns.edu.ar/handle/123456789/5285
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname:Universidad Nacional del Sur
reponame_str Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
collection Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS)
instname_str Universidad Nacional del Sur
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional del Sur (RID-UNS) - Universidad Nacional del Sur
repository.mail.fl_str_mv mesnaola@uns.edu.ar
_version_ 1846787480284561408
score 12.982451