Commodity predictability analysis with a permutation information theory approach
- Autores
- Zunino, Luciano José; Tabak, Benjamin M.; Serinaldi, Francesco; Zanin, Massimiliano; Pérez, Darío Gabriel; Rosso, Osvaldo Aníbal
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity-entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891-1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02-2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity-entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable.
Fil: Zunino, Luciano José. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas; Argentina
Fil: Tabak, Benjamin M.. Universidade Catolica de Brasilia; Brasil
Fil: Serinaldi, Francesco. Università degli Studi della Tuscia; Italia
Fil: Zanin, Massimiliano. Universidad Autónoma de Madrid; España
Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Rosso, Osvaldo Aníbal. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COMMODITY EFFICIENCY
COMPLEXITY-ENTROPY CAUSALITY PLANE
PERMUTATION ENTROPY
PERMUTATION STATISTICAL COMPLEXITY
BANDT AND POMPE METHOD
ORDINAL TIME SERIES ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/236639
Ver los metadatos del registro completo
id |
CONICETDig_b90737b9a9184f95df48e6ff6fbba488 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/236639 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Commodity predictability analysis with a permutation information theory approachZunino, Luciano JoséTabak, Benjamin M.Serinaldi, FrancescoZanin, MassimilianoPérez, Darío GabrielRosso, Osvaldo AníbalCOMMODITY EFFICIENCYCOMPLEXITY-ENTROPY CAUSALITY PLANEPERMUTATION ENTROPYPERMUTATION STATISTICAL COMPLEXITYBANDT AND POMPE METHODORDINAL TIME SERIES ANALYSIShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity-entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891-1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02-2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity-entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable.Fil: Zunino, Luciano José. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas; ArgentinaFil: Tabak, Benjamin M.. Universidade Catolica de Brasilia; BrasilFil: Serinaldi, Francesco. Università degli Studi della Tuscia; ItaliaFil: Zanin, Massimiliano. Universidad Autónoma de Madrid; EspañaFil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; ChileFil: Rosso, Osvaldo Aníbal. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/236639Zunino, Luciano José; Tabak, Benjamin M.; Serinaldi, Francesco; Zanin, Massimiliano ; Pérez, Darío Gabriel; et al.; Commodity predictability analysis with a permutation information theory approach; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 5; 3-2011; 876-8900378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437110009842info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2010.11.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:26:45Zoai:ri.conicet.gov.ar:11336/236639instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:26:45.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Commodity predictability analysis with a permutation information theory approach |
title |
Commodity predictability analysis with a permutation information theory approach |
spellingShingle |
Commodity predictability analysis with a permutation information theory approach Zunino, Luciano José COMMODITY EFFICIENCY COMPLEXITY-ENTROPY CAUSALITY PLANE PERMUTATION ENTROPY PERMUTATION STATISTICAL COMPLEXITY BANDT AND POMPE METHOD ORDINAL TIME SERIES ANALYSIS |
title_short |
Commodity predictability analysis with a permutation information theory approach |
title_full |
Commodity predictability analysis with a permutation information theory approach |
title_fullStr |
Commodity predictability analysis with a permutation information theory approach |
title_full_unstemmed |
Commodity predictability analysis with a permutation information theory approach |
title_sort |
Commodity predictability analysis with a permutation information theory approach |
dc.creator.none.fl_str_mv |
Zunino, Luciano José Tabak, Benjamin M. Serinaldi, Francesco Zanin, Massimiliano Pérez, Darío Gabriel Rosso, Osvaldo Aníbal |
author |
Zunino, Luciano José |
author_facet |
Zunino, Luciano José Tabak, Benjamin M. Serinaldi, Francesco Zanin, Massimiliano Pérez, Darío Gabriel Rosso, Osvaldo Aníbal |
author_role |
author |
author2 |
Tabak, Benjamin M. Serinaldi, Francesco Zanin, Massimiliano Pérez, Darío Gabriel Rosso, Osvaldo Aníbal |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COMMODITY EFFICIENCY COMPLEXITY-ENTROPY CAUSALITY PLANE PERMUTATION ENTROPY PERMUTATION STATISTICAL COMPLEXITY BANDT AND POMPE METHOD ORDINAL TIME SERIES ANALYSIS |
topic |
COMMODITY EFFICIENCY COMPLEXITY-ENTROPY CAUSALITY PLANE PERMUTATION ENTROPY PERMUTATION STATISTICAL COMPLEXITY BANDT AND POMPE METHOD ORDINAL TIME SERIES ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity-entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891-1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02-2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity-entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable. Fil: Zunino, Luciano José. Consejo Superior de Investigaciones Científicas; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Departamento de Ciencias Básicas; Argentina Fil: Tabak, Benjamin M.. Universidade Catolica de Brasilia; Brasil Fil: Serinaldi, Francesco. Università degli Studi della Tuscia; Italia Fil: Zanin, Massimiliano. Universidad Autónoma de Madrid; España Fil: Pérez, Darío Gabriel. Pontificia Universidad Católica de Valparaíso; Chile Fil: Rosso, Osvaldo Aníbal. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
It is widely known that commodity markets are not totally efficient. Long-range dependence is present, and thus the celebrated Brownian motion of prices can be considered only as a first approximation. In this work we analyzed the predictability in commodity markets by using a novel approach derived from Information Theory. The complexity-entropy causality plane has been recently shown to be a useful statistical tool to distinguish the stage of stock market development because differences between emergent and developed stock markets can be easily discriminated and visualized with this representation space [L. Zunino, M. Zanin, B.M. Tabak, D.G. Pérez, O.A. Rosso, Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency, Physica A 389 (2010) 1891-1901]. By estimating the permutation entropy and permutation statistical complexity of twenty basic commodity future markets over a period of around 20 years (1991.01.02-2009.09.01), we can define an associated ranking of efficiency. This ranking is quantifying the presence of patterns and hidden structures in these prime markets. Moreover, the temporal evolution of the commodities in the complexity-entropy causality plane allows us to identify periods of time where the underlying dynamics is more or less predictable. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/236639 Zunino, Luciano José; Tabak, Benjamin M.; Serinaldi, Francesco; Zanin, Massimiliano ; Pérez, Darío Gabriel; et al.; Commodity predictability analysis with a permutation information theory approach; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 5; 3-2011; 876-890 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/236639 |
identifier_str_mv |
Zunino, Luciano José; Tabak, Benjamin M.; Serinaldi, Francesco; Zanin, Massimiliano ; Pérez, Darío Gabriel; et al.; Commodity predictability analysis with a permutation information theory approach; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 390; 5; 3-2011; 876-890 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437110009842 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2010.11.020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606620697788416 |
score |
13.001348 |