The fixed point property in every weak homotopy type

Autores
Barmak, Jonathan Ariel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Materia
FIXED POINT PROPERTY
SIMPLICIAL COMPLEXES
WEAK HOMOTOPY TYPES
FINITE TOPOLOGICAL SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18909

id CONICETDig_e3a690a1cd9daa08c6bf68516bd5513e
oai_identifier_str oai:ri.conicet.gov.ar:11336/18909
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The fixed point property in every weak homotopy typeBarmak, Jonathan ArielFIXED POINT PROPERTYSIMPLICIAL COMPLEXESWEAK HOMOTOPY TYPESFINITE TOPOLOGICAL SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaJohns Hopkins Univ Press2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18909Barmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-14380002-9327CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/631955/summaryinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.1722info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:30Zoai:ri.conicet.gov.ar:11336/18909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:31.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The fixed point property in every weak homotopy type
title The fixed point property in every weak homotopy type
spellingShingle The fixed point property in every weak homotopy type
Barmak, Jonathan Ariel
FIXED POINT PROPERTY
SIMPLICIAL COMPLEXES
WEAK HOMOTOPY TYPES
FINITE TOPOLOGICAL SPACES
title_short The fixed point property in every weak homotopy type
title_full The fixed point property in every weak homotopy type
title_fullStr The fixed point property in every weak homotopy type
title_full_unstemmed The fixed point property in every weak homotopy type
title_sort The fixed point property in every weak homotopy type
dc.creator.none.fl_str_mv Barmak, Jonathan Ariel
author Barmak, Jonathan Ariel
author_facet Barmak, Jonathan Ariel
author_role author
dc.subject.none.fl_str_mv FIXED POINT PROPERTY
SIMPLICIAL COMPLEXES
WEAK HOMOTOPY TYPES
FINITE TOPOLOGICAL SPACES
topic FIXED POINT PROPERTY
SIMPLICIAL COMPLEXES
WEAK HOMOTOPY TYPES
FINITE TOPOLOGICAL SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
description We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18909
Barmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-1438
0002-9327
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18909
identifier_str_mv Barmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-1438
0002-9327
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/631955/summary
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.1722
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Johns Hopkins Univ Press
publisher.none.fl_str_mv Johns Hopkins Univ Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269804049727488
score 13.13397