The fixed point property in every weak homotopy type
- Autores
- Barmak, Jonathan Ariel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
FIXED POINT PROPERTY
SIMPLICIAL COMPLEXES
WEAK HOMOTOPY TYPES
FINITE TOPOLOGICAL SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18909
Ver los metadatos del registro completo
| id |
CONICETDig_e3a690a1cd9daa08c6bf68516bd5513e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18909 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The fixed point property in every weak homotopy typeBarmak, Jonathan ArielFIXED POINT PROPERTYSIMPLICIAL COMPLEXESWEAK HOMOTOPY TYPESFINITE TOPOLOGICAL SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaJohns Hopkins Univ Press2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18909Barmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-14380002-9327CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/631955/summaryinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.1722info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:52:25Zoai:ri.conicet.gov.ar:11336/18909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:52:25.48CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The fixed point property in every weak homotopy type |
| title |
The fixed point property in every weak homotopy type |
| spellingShingle |
The fixed point property in every weak homotopy type Barmak, Jonathan Ariel FIXED POINT PROPERTY SIMPLICIAL COMPLEXES WEAK HOMOTOPY TYPES FINITE TOPOLOGICAL SPACES |
| title_short |
The fixed point property in every weak homotopy type |
| title_full |
The fixed point property in every weak homotopy type |
| title_fullStr |
The fixed point property in every weak homotopy type |
| title_full_unstemmed |
The fixed point property in every weak homotopy type |
| title_sort |
The fixed point property in every weak homotopy type |
| dc.creator.none.fl_str_mv |
Barmak, Jonathan Ariel |
| author |
Barmak, Jonathan Ariel |
| author_facet |
Barmak, Jonathan Ariel |
| author_role |
author |
| dc.subject.none.fl_str_mv |
FIXED POINT PROPERTY SIMPLICIAL COMPLEXES WEAK HOMOTOPY TYPES FINITE TOPOLOGICAL SPACES |
| topic |
FIXED POINT PROPERTY SIMPLICIAL COMPLEXES WEAK HOMOTOPY TYPES FINITE TOPOLOGICAL SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points. Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
| description |
We prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18909 Barmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-1438 0002-9327 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18909 |
| identifier_str_mv |
Barmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-1438 0002-9327 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/631955/summary info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.1722 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Johns Hopkins Univ Press |
| publisher.none.fl_str_mv |
Johns Hopkins Univ Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598180305829888 |
| score |
12.976206 |