Simple homotopy types and finite spaces
- Autores
- Barmak, J.A.; Minian, E.G.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved.
Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Adv. Math. 2008;218(1):87-104
- Materia
-
Finite spaces
Posets
Simple homotopy equivalences
Simple homotopy types
Simplicial complexes
Weak homotopy equivalences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00018708_v218_n1_p87_Barmak
Ver los metadatos del registro completo
id |
BDUBAFCEN_8cf17300f4f3c5fcddfffbcfc15c25cf |
---|---|
oai_identifier_str |
paperaa:paper_00018708_v218_n1_p87_Barmak |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Simple homotopy types and finite spacesBarmak, J.A.Minian, E.G.Finite spacesPosetsSimple homotopy equivalencesSimple homotopy typesSimplicial complexesWeak homotopy equivalencesWe present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved.Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v218_n1_p87_BarmakAdv. Math. 2008;218(1):87-104reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00018708_v218_n1_p87_BarmakInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.589Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Simple homotopy types and finite spaces |
title |
Simple homotopy types and finite spaces |
spellingShingle |
Simple homotopy types and finite spaces Barmak, J.A. Finite spaces Posets Simple homotopy equivalences Simple homotopy types Simplicial complexes Weak homotopy equivalences |
title_short |
Simple homotopy types and finite spaces |
title_full |
Simple homotopy types and finite spaces |
title_fullStr |
Simple homotopy types and finite spaces |
title_full_unstemmed |
Simple homotopy types and finite spaces |
title_sort |
Simple homotopy types and finite spaces |
dc.creator.none.fl_str_mv |
Barmak, J.A. Minian, E.G. |
author |
Barmak, J.A. |
author_facet |
Barmak, J.A. Minian, E.G. |
author_role |
author |
author2 |
Minian, E.G. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Finite spaces Posets Simple homotopy equivalences Simple homotopy types Simplicial complexes Weak homotopy equivalences |
topic |
Finite spaces Posets Simple homotopy equivalences Simple homotopy types Simplicial complexes Weak homotopy equivalences |
dc.description.none.fl_txt_mv |
We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved. Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00018708_v218_n1_p87_Barmak |
url |
http://hdl.handle.net/20.500.12110/paper_00018708_v218_n1_p87_Barmak |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Adv. Math. 2008;218(1):87-104 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340705586905088 |
score |
12.623145 |