Simple homotopy types and finite spaces

Autores
Barmak, J.A.; Minian, E.G.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved.
Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Adv. Math. 2008;218(1):87-104
Materia
Finite spaces
Posets
Simple homotopy equivalences
Simple homotopy types
Simplicial complexes
Weak homotopy equivalences
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00018708_v218_n1_p87_Barmak

id BDUBAFCEN_8cf17300f4f3c5fcddfffbcfc15c25cf
oai_identifier_str paperaa:paper_00018708_v218_n1_p87_Barmak
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Simple homotopy types and finite spacesBarmak, J.A.Minian, E.G.Finite spacesPosetsSimple homotopy equivalencesSimple homotopy typesSimplicial complexesWeak homotopy equivalencesWe present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved.Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v218_n1_p87_BarmakAdv. Math. 2008;218(1):87-104reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00018708_v218_n1_p87_BarmakInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.589Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Simple homotopy types and finite spaces
title Simple homotopy types and finite spaces
spellingShingle Simple homotopy types and finite spaces
Barmak, J.A.
Finite spaces
Posets
Simple homotopy equivalences
Simple homotopy types
Simplicial complexes
Weak homotopy equivalences
title_short Simple homotopy types and finite spaces
title_full Simple homotopy types and finite spaces
title_fullStr Simple homotopy types and finite spaces
title_full_unstemmed Simple homotopy types and finite spaces
title_sort Simple homotopy types and finite spaces
dc.creator.none.fl_str_mv Barmak, J.A.
Minian, E.G.
author Barmak, J.A.
author_facet Barmak, J.A.
Minian, E.G.
author_role author
author2 Minian, E.G.
author2_role author
dc.subject.none.fl_str_mv Finite spaces
Posets
Simple homotopy equivalences
Simple homotopy types
Simplicial complexes
Weak homotopy equivalences
topic Finite spaces
Posets
Simple homotopy equivalences
Simple homotopy types
Simplicial complexes
Weak homotopy equivalences
dc.description.none.fl_txt_mv We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved.
Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a simplicial collapse K (X) ↘ K (Y) of their associated simplicial complexes. Moreover, a simplicial collapse K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space. © 2007 Elsevier Inc. All rights reserved.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00018708_v218_n1_p87_Barmak
url http://hdl.handle.net/20.500.12110/paper_00018708_v218_n1_p87_Barmak
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Adv. Math. 2008;218(1):87-104
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340705586905088
score 12.623145