On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra

Autores
Barmak, Jonathan Ariel; Sadofschi Costa, Iván
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In 1969 R.H. Bing asked the following question: Is there a compact two-dimensional polyhedron with the fixed point property which has even Euler characteristic? In this paper we prove that there are no spaces with these properties and abelian fundamental group. We also show that the fundamental group of such a complex cannot have trivial Schur multiplier.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Sadofschi Costa, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
Fixed Point Property
Homotopy Classification
Nielsen Fixed Point Theory
Two-Dimensional Complexes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55548

id CONICETDig_8647d9a91ae8c4987ffbda6fa471aeb2
oai_identifier_str oai:ri.conicet.gov.ar:11336/55548
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedraBarmak, Jonathan ArielSadofschi Costa, IvánFixed Point PropertyHomotopy ClassificationNielsen Fixed Point TheoryTwo-Dimensional Complexeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 1969 R.H. Bing asked the following question: Is there a compact two-dimensional polyhedron with the fixed point property which has even Euler characteristic? In this paper we prove that there are no spaces with these properties and abelian fundamental group. We also show that the fundamental group of such a complex cannot have trivial Schur multiplier.Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Sadofschi Costa, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAcademic Press Inc Elsevier Science2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55548Barmak, Jonathan Ariel; Sadofschi Costa, Iván; On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra; Academic Press Inc Elsevier Science; Advances in Mathematics; 305; 1-2017; 339-3500001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870816312488info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2016.09.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:26Zoai:ri.conicet.gov.ar:11336/55548instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:26.917CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
title On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
spellingShingle On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
Barmak, Jonathan Ariel
Fixed Point Property
Homotopy Classification
Nielsen Fixed Point Theory
Two-Dimensional Complexes
title_short On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
title_full On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
title_fullStr On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
title_full_unstemmed On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
title_sort On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
dc.creator.none.fl_str_mv Barmak, Jonathan Ariel
Sadofschi Costa, Iván
author Barmak, Jonathan Ariel
author_facet Barmak, Jonathan Ariel
Sadofschi Costa, Iván
author_role author
author2 Sadofschi Costa, Iván
author2_role author
dc.subject.none.fl_str_mv Fixed Point Property
Homotopy Classification
Nielsen Fixed Point Theory
Two-Dimensional Complexes
topic Fixed Point Property
Homotopy Classification
Nielsen Fixed Point Theory
Two-Dimensional Complexes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In 1969 R.H. Bing asked the following question: Is there a compact two-dimensional polyhedron with the fixed point property which has even Euler characteristic? In this paper we prove that there are no spaces with these properties and abelian fundamental group. We also show that the fundamental group of such a complex cannot have trivial Schur multiplier.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Sadofschi Costa, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description In 1969 R.H. Bing asked the following question: Is there a compact two-dimensional polyhedron with the fixed point property which has even Euler characteristic? In this paper we prove that there are no spaces with these properties and abelian fundamental group. We also show that the fundamental group of such a complex cannot have trivial Schur multiplier.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55548
Barmak, Jonathan Ariel; Sadofschi Costa, Iván; On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra; Academic Press Inc Elsevier Science; Advances in Mathematics; 305; 1-2017; 339-350
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55548
identifier_str_mv Barmak, Jonathan Ariel; Sadofschi Costa, Iván; On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra; Academic Press Inc Elsevier Science; Advances in Mathematics; 305; 1-2017; 339-350
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870816312488
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2016.09.025
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269520122609664
score 13.13397